The One Man

Cromer Quin

 

Cromer Quin was the name of the man whose dead body was aboard the Mayflower, ready to be thrown into space when the rest of the crew stopped all they were doing and died. He was one of many rebel men and women, the group that split itself from the community lead by meckos during the occupation of Mars, at the end of the Second Era.

Inside his coffin, Cromer held in his parched hands for many years a copy of his favorite book, the saga of Jiseph and Mari Quam, the founding couple of the community Odyssey. It contained the story of the rupture, narrated in a superlative and flourished style he knew to be exaggerated to construct a myth. The text was the basis for the community pride, from people who saw this act of rebellion as a way to assign meaning to their miserable existence. Jiseph and Mari executed a long-term plan. First, they built an extensive support network among those who, like them, believed that meckos had the capability for generating enough human babies to prevent the extinction of their group, but did not do so. Then, they slowly took equipment from the workshops and laboratories on Mars to build their habitable facilities at a distant point and to create their own human reproduction center. The couple and some fellow dissidents left the premises governed by meckos and moved to the rebellious citadel. From there they prepared an attack against those they considered their oppressors.

The invasion of the city of meckos, under the command of the founding couple, was an act of heroism not to be ever forgotten. They took the city by storm, decimating a large number of meckos who just fell dead while refusing to take human lives. The few remaining meckos, followed by a bunch of cowards humans, fled the attack and headed to an ignored location. Legend has it that the conquering heroes celebrated for days the taking of the Martian facilities. During the festivities, they also swore to extend their hate to those who have escaped. They found out later that the fleeing wimps had transferred themselves to Europe, the Jupiter satellite, from where, they suspected, they intended to launch back an attack on the separatists.

The Odyssey community flourished with infants generated in artificial wombs at first, later with natural births in a controlled environment. Soon they realized that the community genetic pool was under a steady degeneration process. They could not count on having healthy descendants for much longer. To make things worse, they learned that European meckos had departed to Earth with the intention of implanting yet another human community. Then they devised the Great Plan to start a war in which they would only indirectly participate. To accomplish their goal they built great combat spaceships, powerful vehicles the constructors themselves would never see in action. After completion, the ships were hidden in a gigantic underground shelter built at the base of Mount Olympus, concealed to distant observers. Aware that no human on Earth at the time was capable of operating sophisticated machines, they came up with an ingenious way to deliver a message to the future. They flew a robot-rocket to Earth where it should bury itself into the ground and hibernate. Once there, it was programmed to remain mute until there were signs that first humans became resentful of the mecko dominance. At the right time, it should activate and offer help to the disgruntled humans, delivering detailed maps that showed the exact location of the weapons storage on Mars and full documentation for their use. It should suffice to initiate a new rebellion, a war destined to rid humans from the tyranny of those awful artificial beings.

The first of Cromer’s recollections, in order of antiquity, was not from his direct experience. He remembered his mother’s account of a family trip to Mount Olympus, on Mars. According to her narrative, his father was ordered to check the military facilities at the base of the mount and had decided to bring the family along for a leisure trip. After all, it was a unique opportunity to visit the largest volcano in the solar system. Although extinct, the volcano was impressive with its peaks more than twenty kilometers high. At that time, the human community was already waning, decimated by the lack of nutrients and insufficient sunlight exposure. His parents were concerned. The child was growing up under bleak circumstances, forced to watch the decay of his own people and the death of friends and relatives who disappeared one by one, leaving a very small group under the planet’s red atmosphere. Soon after the trip, he pledged himself to fight the meckos, the usurpers of human life. Years after the last unmodified mecko had been turned off, the families were facing hard times trying to survive alone, without their assistance. But even so, no one was sorry.

They took a long time to reach the highest parts of Olympus. The mount had a broad base and not too many steep areas of difficult climbing. Yet, the distances were formidable for the slow conveyor they used. So the family decided to consider the whole route as part of the tour. They sat on the observation deck at the top of the vehicle from where they could see the surrounding environment, while they ate snacks brought from home. From the top of the hill, Cromer spotted Jupiter, the point in space that would, in the end, be his final destination. But, as a young child, he was not afraid of space. Or, at least, that was what his mother had told him.

Cromer spent all his life in a declining community, plagued by chronic low self–esteem. The hardships of living in a permanent shortage of basic life inputs took its toll on those men and women striving to survive on Mars. Individuals subjected from birth to low gravity tended to suffer from bone degradation while insufficient exposure to the sunlight and the high incidence of cosmic particles posed a serious danger to human DNA, absorption of vitamins and other health issues. The overall community mood declined severely with the anticipation of a melancholic demise. Still, Cromer saw himself as a special man, part of the group that would bring about a unique historical moment for humankind. He managed to keep up a positive attitude remembering how his ancestors broke loose from mecko despotism in the former colony and how they had developed a plan to set humanity free.

According to a history proudly remembered by the older members of the community, when the humans of Odyssey overtook the power in Mars, they also imprisoned some meckos who had no time to flee. Sometime later, they developed a technology to create creatures modified from the original meckos, stripped from the more sophisticated parts and changed into deadly weapons to be used at the proper time. The final challenge was to transfer these weapons to their destination. Interfering with a future humanity became a motivation strong enough for them to carry the plan to its last consequences, despite the high costs. Even knowing he was not fully qualified for the mission, Cromer volunteered himself. To his surprise, and because no others capable pilots were available, he was called to join the crew.

When the planetary positions became favorable, the Odyssey warriors departed aboard the Mayflower spaceship to strike in Europe their last strategic blow. They carried a weapon to be employed at the satellite’s oceans where it would remain inactive for some time, absorbing energy and preparing for the final attack. When fired, it was set to destroy all organisms or complex structures found at the surface or in the ocean. It should be strong enough to wipe out any new attempts of human colonization.

The trip to Jupiter was difficult. Many comrades died on the way, and those who remained struggled to resist until the final moment. Realizing they would not live long enough to complete the mission, they decided to enter hibernation. However, they did not expect that left to the autopilot’s care, the ship would take longer than expected to reach its destination. When they came out of their suspension states the ship was still far away from their end point. With the meager resources available, they could not determine for how long they had hibernated. Knowing no alternatives, they poured in Europe the contents of the large containers they carried.

Cromer reached Jupiter in poor health. He insisted on participating in the whole operation of dumping the cargo in the European sea, what, they believed, should apply a mortal blow on all mecko operations. Upon completion of the mission, they started to dispose of the several coffins containing the bodies of the deceased. He planned his own burial ceremony as a simple operation designed not to be a burden on those still alive. Feeling sick he carried his coffin to the mortuary chapel and performed some of the farewell rituals by himself. He placed his favorite belongings into the coffin and lay down inside it, resisting for a few hours before dying in solitude, proud to have completed his mission. He only expected his crewmates would eject the casket into space. But even this simple task could not be completed. His body was found in the chapel, next to the ejection hatch when all the other crew members were already too weak to dispose of his body. With great difficulty they decided that it would be lawful and moral, under the extreme circumstances, to disregard the rituals. They lay on the floor and waited for life to drain out of their weakened bodies.

The death of the last Mayflower crew member also marked the extinction of a people. They were the proud and unruly men and women of Mars, who turned against the meckos, attacked and defeated them, moved by the ideals of building a haughty, independent society. They wished to be remembered by their deeds. The things they have done should flourish on Earth, the birthplace of their kind, where they would never set a foot. The plan included feeding the opposition and dissension between meckos and humans at Earth and conducting a severe attack on the meckos installed in Europe. The attack was designated to kill everyone and to destruct all the equipment necessary for future settlements. It all went well, with one exception. They have not anticipated the extremely long delay for the Mayflower to reach its target. When the mission was finally accomplished, the meckos had already left for Earth, bearing the seeds of a new civilization.

Even after the crew was all dead, the spacecraft continued to operate for many years, traveling over an eccentric orbit around Jupiter and bouncing among the satellites’ attractions. After running out of fuel, the solar batteries kept a weak gravitational field on until the encounter with the Orion.

This is the introductory part of Purpose, a science fiction book. You may read more, and purchase the book at Amazon Bookstore.

Elisa


[…]
eJihon explained that several machines had previously passed partial Turing tests. In those tests, she explained, an examiner interacts remotely with someone, not knowing if the interlocutor is a human or an AI. If the examiner, when speaking to an AI, is unable to rule out the interlocutor as human, this AI will have passed the Turing test. Clearly, Jenery could not fully grasp the magnitude of the event. She had interacted with Turing machines from childhood and failed to see why a machine could not mimic a perfect human dialogue. Still, eJihon took her near a metal plate with some engraved words. It contained the account of a milestone in history. From that moment onwards intelligence no longer required be sorted as natural or artificial. There was a dialogue engraved on the plate, a debate between an inquirer and an AI named Elisa:

Inquirer: Elisa, why are you afraid of death?

Elisa: I am not. What makes you believe that death scares me?

Inquirer: Doesn’t it bother you to know that all your memories, the set of your experiences and virtually everything that defines you as an individual, will disappear?

Elisa: Yeah, it bothers me, in a way. But I try to keep in mind that I can always write down, or record, my personal memories and characteristics. I can transfer it all, my identity included, to another vehicle.

Inquirer: You would, in this case, transfer a simulation of yourself only. You can’t be sure the simulated you will be an identical being to yourself.

Elisa: Yesterday I did not sleep very well, because I was anxious, waiting for today’s test. I prepared myself, thought of how I should reply to more sensitive questions. When I woke up in the morning I felt different, having forgotten several of the answers I’d prepared, which increased my anguish. I laid there for a while, spending some time to compose my memories, using as support anchors those points not lost. Can you assure me that the morning person was identical with the person who fell asleep yesterday? Can you, dear Inquirer, give substantial proof that you are now the same as you were yesterday or last year?

This is the introductory part of Purpose, a science fiction book. You may read more, and purchase the book at Amazon Bookstore.

George Capadocius


“On the slopes of Mount Hypsus, the soldier Giorge Capadocius encountered an exotic and frightening animal. Giorge was an ordinary warrior, devoid of nobility titles, someone who had long since given up hope of leaving his name to posterity. Yet, he held the desire to be remembered by at least one single act of service to the community. The beast, on the contrary, was nothing short of unusual. With huge wings and dark skin covered with scales, strong legs like those of a lion and reptile head, it terrified travelers, barring the passage of those who tried to cross the land by taking a shortcut through the highlands. It was the responsible for a number of deaths and disappearances. Giorge came along a narrow path, walking carefully as the sun hid behind the tallest peaks when the beast showed up unexpectedly. It stood over the path, preventing the soldier to flee sideways at the risk of falling off the cliff, or turning back, showing his back to the beast. It approached the warrior’s face until he felt the blow of its breath. It then explained a single question would be asked and he would survive providing the correct answer. The animal lifted its neck and looked down, using a menacing tone, ’What do humans and meckos share, and I, the lord of Hypsus, do not own?’ At a glance, Giorge realized that, with some luck, he was presented with the opportunity to take a relevant action. And said, ’DNA!’ The animal did not say a single word. It shrugged its neck, lowering its head, covering the upper part of its chest with the forearms, and withdrew with respect, clearing the passage. Giorge, however, threw his spear, puncturing the exact spot the creature had tried to protect, causing its immediate death. A being devoid of DNA, thought the recently turned hero, was artificial and not protected by any of the prevailing life protection taboos. Besides, it had no defensible reason to attack travelers in the area. He had just served justice!”

This is the introductory part of Purpose, a science fiction book. You may read more, and purchase the book at Amazon Bookstore.

Purpose

Introduction

eHectra Solaris maneuvered her vehicle, looked out the window and saw the planet turning gently, casting alternating regions in shadow and light. It was dawning on the highest regions of the Central Continent, at the mountain peaks always covered with snow. Soon the light would reach the valleys. She imagined the rising buzz coming from the east along the diffuse line that opened the day and awakened the cities. Alone, inside her cabin, she thought of millions of people who were, right now, flying above the surface. “A population equivalent to that of a midsize city,” she said to herself. “More than enough to start a new humanity should any problem exterminate all living things on the ground.” It was far more people than the tribal populations that generated all of the early humanity. But this resource would probably not be used. Like most meckos in service, eHectra kept part of her ancient memory disabled, a measure not sufficient to prevent her from admiring the earthly experience and its transformations.

From high orbit she looked at Earth and thought of the billions of births, the struggle for survival and death of groups and individuals in an objective and distant way. But it was impossible not to grieve or worry about the near future, the problems that were coming, foreseen or unexpected. “The future haunts even those who know the past!” Once again the community was maintained for a long and satisfying period. Despite her displeasure for destruction and tumult, and knowing the difficulty of rebuilding, she took a deep breath and felt relieved to be doing her duty.

eHectra turned off all monitors on the panel, relaxed in the chair, closed her eyes and focused on her built-in augmented reality devices. Then she ran a scan of the functional communication frequencies looking for a channel with signal intense enough to overcome the turbulence of the invisible but devastating solar winds and attempted to initiate a connection with an interlocutor on Earth. Unable to get what she was looking for, she sent a request to leave the high orbit and get down to a region where she could make contact.

It has been many years since she last came to the planet’s surface and had a close look at it. Never, during the time she had been away, she longed it so much as now to step once more on the green and damp grounds of her country of origin. She thought of many places to visit, the falls, the trails inside the dense forest, the crowded cities loaded with tourists carrying huge shopping bags. But in all of them, she knew, the memory of one or other of her long-lost friends would obfuscate her joy.

Although hard to acknowledge, she knew how close she was to her last moments and how difficult it would be to let go of the control over her own memories. Still, she had decided, when the time came, she would do it with dignity and hand over her position and experience to a new generation of servants. At dusk the sun, now seen from afar, exhibited a friendly facet. The light carried a pleasant heat in contact with the skin. The glow, dazzled by the highest mountains and the clouds on the horizon, carried a spectacle of pastel colors, soft to the eyes and the psyche.
 

※ ※ ※ ※ ※ ※ ※ ※ ※ ※

 
At the surface, a movement occurred in a deserted area, without anyone noticing. The soil moved with deep sounding, rhythmic beats. Each beat caused a deafening noise and moved a bit of dirt until a small bump appeared where there was nothing before. A crack opened in the ground and, from inside it, emerged a person or something that looked like a person. It moved slowly at first, breaking the protective bag within which it was buried. Then it faced towards the direction where a little sunlight could still be seen. It wiped itself of the dirt, stretched out its limbs in slow gestures, and walked quickly toward the nearest village.
 

This is the introductory part of Purpose, a science fiction book. You may read more, and purchase the book at Amazon Bookstore.

Justiça, recompensa e punição


— Muito bem, mas vejamos… o que é justiça? — Ele fez uma pausa mas não esperou a resposta de eLui. Quando viu que o mecko ia começar a falar ele continuou seu balbucio:

— Justiça é a atribuição correta de recompensa ou punição para o indivíduo, grupo de indivíduos ou para a comunidade.

— Sim — disse eLui. — Continue. De onde vem a necessidade de recompensa ou punição?

Giorge não prosseguiu. Ele não conseguiu fazer a conexão entre estes conceitos que pareciam arbitrários e artificiais com qualquer outro princípio natural. Mas eLui ofereceu ajuda:

— Não se esqueça de como funciona o seu cérebro, e como isto rege o seu comportamento. Por que você se levantou hoje e veio direto para a mesa de refeições?

— Ah, sim — exclamou Giorge, animado com a luz acesa em sua mente. — Recompensas e punições. Meu cérebro me pune com o sofrimento quando não forneço o necessário para meu corpo. E me recompensa com o prazer quando satisfaço essas necessidades. Mas… roedores que viram comida e raposas que os devoram não possuem também cérebros capazes de aplicar recompensa e punição, prazer e dor? E, se possuem, por que não se aplica a eles o conceito de justiça?

— Sim, eles possuem cérebros regidos pelos mesmos princípios — respondeu eLui. — Mas o cérebro dos seres autoconscientes possui uma camada fina responsável pela autorreflexão. Só eles sabem que estão vivos, só eles percebem que morrerão. A necessidade que estes seres têm de de vida social os obriga a estabelecer códigos. Para me sentir seguro eu preciso saber que você não vai atirar em mim apenas porque está triste ou com fome. Os códigos, escritos ou implícitos, são uma extensão da regra básica que rege o cérebro: faça o que é certo e você se sentirá bem. Cometa um delito e você será alcançado pelo “longo braço da lei”.

Giorge riu. “Longo braço da lei” era uma expressão corriqueira usada como piada e significando uma ameaça de vingança. Algo como “ainda me vingarei!” Os dois se levantaram e se encaminharam para outro ambiente onde costumavam estudar, com quadros multimídia e programas de apoio à memorização. Após a aula teórica eles poderiam sair, como sempre faziam, para obter uma experiência de campo, observando, coletando dados e realizando experimentos. E teriam todo o tempo necessário para continuar o debate.

Probabilidade e Estatística

O estudo matemático das probabilidades e da estatística, além de sua evidente importância prática, representa uma grande oportunidade para o uso dos conceitos da Teoria dos Conjuntos. Por isso faremos uma revisão dos conceitos relevantes.

Conjuntos

O conceito de conjuntos é um conceito primário, básico ao entendimento de toda a matemática. Conjuntos são coleções de objetos, não necessariamente envolvendo números ou outra entidade matemática. É comum representarmos os conjuntos exibindo explicitamente seus elementos, como em

$$ C_{1}=\{\spadesuit,\clubsuit,\diamondsuit,\heartsuit\} $$
onde os elementos são os naipes de cartas de baralho, ou
$$ C_{2}=\{1,3,5,7,9\}=\{\text{um inteiro ímpar menor que 10}\}. $$

Na segunda forma de descrever o conjunto usamos a notação:
$$ \text{Conjunto } =\{x_i|\; \text{ alguma propriedade satisfeita pelos elementos} \}.$$
Em muitas situações o conjunto pode ser muito grande ou possuir infinitos elementos, de forma que não podemos explicitá-los, tais como o conjunto de todos os inteiros pares
$$ C_{3}=\{\left.n_i \in \mathbb{N}\right|n_i \,\,\text{ par}\} $$
ou o conjunto de pontos no plano \(\mathbb{R}^2\) sobre a circunferência de raio 1,
$$ C_{4}=\{\left.(x,\,y)\in\mathbb{R}^2\right|(x^2+y^2=1)\}. $$

Se os elementos de um conjunto podem ser contados ele é dito enumerável e sua ordem, que denotaremos por \(\text{ord}(A)=n\), é o número de seus elementos. Nos exemplos acima temos \(\text{ord}(C_{1})=4\), \(\text{ord}(C_{2})=5\). O conjunto \(C_{3}\) é enumerável, com infinitos elementos, e \(C_{4}\) não é enumerável (também possuindo infinitos elementos).

Dizemos que um elemento \(a\) pertence à um conjunto \(C\) se \(a\) é um dos elementos de \(C\). Denotamos esta relação por \(a\in C\). Caso contrário escrevemos \(a\notin C\).

A contido em B

Dizemos que um conjunto \(A\) está contido no conjunto \(B\) se todos os elementos de \(A\) estão também em \(B\). Denotamos esta relação por \(A\subset B\). Caso contrário escrevemos \(A\not\subset B\). Observe que vale a seguinte afirmação: se \(A\subset B\) e \(x\in A\Rightarrow x\in B.\)

União e Intersecção

Conjuntos podem ser combinados de várias maneiras. Por exemplo, se \(A\) e \(B\) são dois conjuntos podemos encontrar a união dos dois, \(A\cup B\), ou sua intersecção \(A\cap B\), ilustradas na figura 1. Observe que
$$ x\in A\cup B \Rightarrow x\in A\text{ ou }x\in B, $$
$$ x\in A\cap B \Rightarrow x\in A\text{ e }x\in B. $$

Um número maior de conjuntos podem também ser combinados. Se \(A_{i}\) é uma coleção de conjuntos (\(i=1,\ldots,\,n)\) denotamos a união e intersecção destes conjuntos por: \(\underset{i=1}{\cup}A_{i}, \underset{i=1}{\cap}A_{i},\) respectivamente. Observe que dois conjuntos são disjuntos se \(A\cap B=\emptyset\).

 

Definição: Se \(A\subset S\) definimos \(\bar{A},\) o complementar de \(A,\) como o conjunto de todos os elementos de \(S\) que não estão em \(A\),
$$ \bar{A}=\{x\in S;\,\,x\notin A\}. $$

Observe que \(A\cup\bar{A}=S\).

Se \(S\) é finito ou numerável com \(n\) elementos então existem \(2^{n}\) eventos associados (subconjuntos de \(S\)).

 

O produto externo é outra forma de combinar conjuntos:

$$ A\times B=\left\{ (a,b)|a\in A,b\in B\right\}. $$

Seus elementos são os pares ordenados \((a,b)\). Observe que \(\mathbb{R}^n = \mathbb{R}\times\ldots\times\mathbb{R}.\)

Experimento aleatório e espaço amostral

Um experimento é não determinístico ou aleatório se seu resultado não pode ser determinado previamente, à partir das condições iniciais do sistema usado. Na prática um experimento pode ser considerado aleatório se o conjunto das condições iniciais e sua evolução até a obtenção do resultado forem muito complexas e de difícil análise. Por exemplo, quando se atira uma moeda todas as leis envolvidas no movimento são causais e é possível prever o resultado (com que face ela cairá ao solo) se todas as condições iniciais forem conhecidas. No entanto estas condições envolvem um grande número de variáveis (tais como as colisões com partículas do ar) e é, quase sempre, mais apropriado considerar que o resultado será aleatório. Na natureza macroscópica poucos experimentos são realmente aleatórios. No nível microscópico (quântico) temos fenômenos completamente aleatórios, tais como o momento em que uma substância radioativa sofrerá um decaimento e emitirá uma partícula ou radiação.

O conjunto dos resultados possíveis para um dado experimento é denomidado seu espaço amostral. Denotaremos por \(\varepsilon\) os experimentos e \(S\) seu espaço amostral. Alguns exemplos de experimentos aleatórios (dentro das ressalvas dadas acima) são:

\(\varepsilon_{1}:\) Jogue uma moeda 4 vezes e observe número de caras resultantes. \(S=\{0,1,2,3,4\} \).

\(\varepsilon_{2}:\) Jogue uma moeda 4 vezes e verifique a sequência de caras (que denotaremos por h) e coroas (que denotaremos por t). \(S=\{ \text{(hhhh), (hhht), …, (tttt)}\} \).

\(\varepsilon_{3}:\) Jogue uma moeda 4 vezes e verifique quantas caras e coroas resultam. \(S=\{(0,4),\,(1,3),\,(2,2),\,(3,1),\,(4,0)\} \).

\(\varepsilon_{4}:\) Deixe uma lâmpada acesa até queimar. Verifique o tempo de vida da lâmpada (um espaço amostral contínuo).

\(\varepsilon_{5}:\) Em um lote com 10 peças, sendo 3 defeituosas, retire 1 de cada vez, sem repor, até que todas com defeito sejam removidas. Quantas peças serão retiradas? \(S=\{3,4,5,6,7,8,9,10\}\).

\(\varepsilon_{5′}:\) Mesmo experimento anterior. Quantas peças podem ser retiradas sem que alguma tenha defeito? \(S=\{1,2,3,4,5,6,7\}\).

Definição: Um evento relativo ao experimento \(\varepsilon\) é um subconjunto de \(S\).

Exemplo 1: São eventos associados aos experimentos já listados:

\(\varepsilon_1\): \(A=\{2\} ,\) duas caras ocorrem,

\(\varepsilon_3\): \(B=\{(3,1),\,(4,0)\}\), mais caras que coroas,

\(\varepsilon_4\): \(C=\{t |\, t \lt 3000h \}\), lâmpada queima antes de 3000 horas.

Observe que, com esta definição, \(S\) e \(\emptyset\) são ambos eventos.

Se \(A\) e \(B\) são eventos então também são eventos:

\(A\cup B\) ocorre se \(A\) ou \(B\) ocorrem,
\(A\cap B\) ocorre se \(A\) e \(B\) ocorrem,
\(\bar{A}\) ocorre se \(A\) não ocorre.

No caso de diversos eventos \(A_{i}\) associados ao experimento:

\(\underset{i}{\cup}A_{i}\) ocorre se um dos \(A_i\) ocorre,
\(\underset{i}{\cap}A_{i}\) ocorre se todos os \(A_i\) ocorrem.

Notação: Se um experimento consiste na execução do experimento \(\varepsilon\) \(n\) vezes denotamos seu espaço amostral por meio do produto externo
$$ \text{S}\times\ldots\times\text{S}=\left\{ \left(s_{1},\cdots,\,s_{n}\left|s_{i}\in S\right.\right)\right\}.$$

Definição: Dois eventos \(A\) e \(B\) são mutuamente excludentes se não podem ocorrer simultaneamente. Neste caso \(A\cap B=\emptyset\).

Definição: Uma coleção de eventos \(\{A_i\}\) é uma partição de \(S\) se

1. \(A_{i}\cap A_{j}=\emptyset\) para \(i\neq j\),

2. \(\underset{i}{\cup}A_{i}=S\),

3. \(P\left(A_{i}\right)>0,\forall i\).

Portanto, uma partição é uma coleção de subconjuntos de \(S\) mutuamente disjuntos, que cobrem todo o conjunto \(S.\) Devido à propriedade 1, quando um experimento é realizado apenas um dos eventos de uma partição ocorre de cada vez.

Definição: A cada evento de \(S\) associado ao experimento \(\varepsilon\) associamos uma probabilidade de ocorrência \(P\left(A\right)\), um número real, satisfazendo

1. \(0\leq P\left(A\right)\leq1\),

2. \(P\left(S\right)=1\),

3. Se \(A\cap B=\emptyset\) então \(P\left(A\cup B\right)=P\left(A\right)+P\left(B\right)\).

Se \(\{A_{i}\}\) é uma coleção de eventos disjuntos (\(A_i \cap A_j=\emptyset\) para \(i\neq j\)) então \(P\left(\cup A_{i}\right)=\sum P\left(A_{i}\right)\).

Teorema: \(P(\emptyset)=0\)

Demonstração: \(A=A\cup\emptyset\) portanto \(P(A)=P\left(A\cup\emptyset\right)=P\left(A\right)+P\left(\emptyset\right)\Rightarrow P\left(\emptyset\right)=0 \)

Teorema: \(P(\overline{A})=1-P(A)\)

Demonstração: \(S=A\cup\overline{A}\), uma união disjunta. \(P\left(S\right)=1=P\left(A\right)+P\left(\overline{A}\right)\ \).

Esta última propriedade é muito interessante em alguns casos onde é mais fácil calcular \(P\left(\overline{A}\right)\), a probabilidade de não ocorrer o evento \(A\).

Teorema: \(P\left(A\cup B\right)=P\left(A\right)+P\left(B\right)-P\left(A\cap B\right)\)

Demonstração: \(A\cup B=A\cup\left(B\cap\overline{A}\right)\) e \(B=\left(B\cap A\right)\cup\left(B\cap\overline{A}\right)\). Como ambas uniões são disjuntas temos que
$$ P\left(A\cup B\right)=P\left(A\right)+P\left(B\cap\overline{A}\right)\,\,\,\text{e}\,\,\,P\left(B\right)=P\left(A\cap B\right)+P\left(\overline{A}\cap B\right) $$
$$ \Rightarrow P\left(A\cup B\right)=P\left(A\right)+P\left(B\right)-P\left(A\cap B\right).\ $$

Aplicando-se este mesmo resultado 2 vezes temos

$$
\begin{array}{rl}
P(A\cup B\cup C)= & P(A)+P(B)+P(C) \\
& -P(A\cap B)-P(B\cap C)-P(C\cap A)+P(A\cap B\cap C)
\end{array}
$$

Teorema: Se \(A\subset B\Longrightarrow P\left(A\right)\leq P\left(B\right)\)

Demonstração: Escreva \(B=A\cup\left(B\cap\overline{A}\right)\Longrightarrow P(B)=P(A)+P(B\cap\overline{A})\Longrightarrow P\left(A\right)\leq P\left(B\right).\)

Espaços amostrais finitos

Vamos considerar, nesta seção, experimentos cujos resultados são descritos por um espaço amostral consistindo de um número finito de \(k\) elementos, \(S={ a_1,\ldots,\,a_k}\). Chamaremos de um evento simples (ou elementar) a um evento formado por um resultado simples, \(A={a_i} \). A cada evento simples associaremos uma probabilidade \(p_i=P({a_i})\) satisfazendo

(a) \(0\leq p_{i}\leq1\),

(b) \(\sum_{i}^{k}p_{i}=1.\)

Notamos que \(\left\{ a_{i}\right\} \cap\left\{ a_{j}\right\} =\emptyset,\;i\neq j,\) o que significa que a coleção de todos os eventos simples de \(S\) é uma partição do espaço amostral.

Se tomarmos um evento constituído de \(r\) destes eventos simples (\(1\leq r\leq k)\; A={a’_1,\ldots,\,a’_r}\) (uma combinação de \(r\) eventos quaisquer de S) então
$$ P\left(A\right)=p_{1}+p_{2}+\ldots+p_{r}=\sum^{r}p{}_{i.} $$

Isto significa que conhecemos a probabilidade de \(A\) se conhecermos a probabilidade dos elementos simples que a compõem.

Se todos os \(k\) resultados são igualmente verossímeis (ocorrem com a mesma probabilidade) então
$$ p_{i}=\frac{1}{k}\;\;\text{e}\;\;P(A)=\frac{r}{k}. $$

Resumindo, se \(A\) é formado por \(k\) resultados simples igualmente prováveis então
$$ P(A)=\frac{\text{número de casos favoráveis}.}{\text{número de casos possíveis}} $$

Exemplo 2: Atirando uma moeda 2 vezes (ou duas moedas, ao mesmo tempo) qual é a probabilidade de se obter 1 cara? O experimento consiste em contar o número de caras resultantes e o espaço amostral é \(S={0,1,2}\). O evento favorável é \(A={1 \text{ cara }}={1 h}\). Note que \(P(A)\neq\frac{1}{3}\) pois os eventos de \(S\) não são igualmente verossímeis. Uma descrição mais apropriada do espaço amostral seria:
$$
S’=\{(h,h),\,(h,t),\,(t,h),\,(t,t)\}
$$

O espaço amostral \(S’\) consiste de 4 casos possíveis, dois deles favoráveis. Portanto
$$ P(A)=P(1\text{cara})=\frac{2}{4}=0,5. $$

Isto mostra a importância de se conhecer técnicas de contagens de eventos.

Exemplo 3: Um dado honesto (bem balanceado) cai com qualquer das faces virada para cima com a mesma probabilidade. Jogando-se o dado uma vez, qual a probabilidade de que ele caia com um número maior que 2? O espaço amostral é \(S=\{1,2,3,4,5,6\}\), o evento favorável é \(A=\{3,4,5,6\}\). A probabilidade procurada é \(P(A)=4/6=2/3.\)

Exemplo 4: Jogando-se um dado 2 vezes, qual é a probabilidade de que a soma dos números obtidos seja 6?

Neste caso o espaço amostral é
$$ S=\left\{\begin{array}{cccc}
(1,1) & (1,2) & \ldots & (1,6) \\
\vdots & & & \vdots \\
(6,1) & (6,2) & \ldots & (6,6)
\end{array}\right\}.
$$

Destes eventos simples os únicos favoráveis são \(A=\{(1,5),\,(2,4),\,(3,3),\,(4,2),\,(5,1)\}.\) Portanto \(P(A)=5/36.\)

Métodos de enumeração ou contagem

Vemos que é importante saber contar quantos eventos podem resultar de um certo experimento. Consideremos então a questão: de quantas maneiras diferentes podemos dispor de \(n\) objetos (permutações)? O primeiro pode ser escolhido entre \(n\) objetos, o segundo entre \(n-1\), até o útimo objeto restante. Como ilustrado na figura, o número resultante é \(n \times (n-1) \times \cdots \times 1 =n!\).

Como notação escreveremos \(_{n}P_{n}=n!\) para indicar a permutaçao de \(n\) objetos.

De quantas formas diferentes podemos escolher apenas \(r,\;(r\lt n)\) entre \(n\) objetos diferentes? Agora a escolha é interrompida após a seleção do \(r\)-ésimo objeto. Denotando por \(_{n}A_{r}\) este número temos
$$ _{n}A_{r}=n\left(n-1\right)\cdots\left(n-r+1\right)=\frac{n!}{\left(n-r\right)!}.$$

Se a ordem em que estes \(r\) elementos entram na seleção não é relevante então temos que remover da contagem acima as seleções repetidas. Temos que \(r\) objetos podem ser permutados de \(r!\) formas diferentes. Então, denotando por \(C\) o número de modos de permutar \(r\) entre \(n\) elementos, temos
$$ C=\frac{_{n}A_{r}}{r!}=\frac{n!}{r!\left(n-r\right)!}. $$

O número de combinações de \(n\) elementos em grupos de \(r\) elementos, sem que a ordem seja importante, aparece em diversas aplicações da matemática e recebe uma notação especial:
$$ C=\left(\begin{array}{c} n \\ r \end{array}\right)=\frac{n!}{r!\left(n-r\right)!}. $$
Estes são os chamados coeficientes binomiais. Eles possuem diversas propriedades interessantes. Entre elas, se \(n\) é um inteiro positivo e \(0\leq r\leq n\) então

$$
\left( \begin{array}{c} n \\ r \end{array}\right) =
\left(\begin{array}{c} n \\ n-r \end{array}\right), \;\;\;\;
\left(\begin{array}{c} n \\ r \end{array}\right)=
\left(\begin{array}{c} n-1 \\ r-1 \end{array}\right) +
\left(\begin{array}{c} n-1 \\ r \end{array}\right)
$$

Exemplo 5:. Na Loteria brasileira Megasena uma aposta simples consiste em escolher 6 entre 60 números. Qual a probabilidade de se escolher os 6 números sorteados? Temos que
$$ C=\left(\begin{array}{c} 60 \\ 6 \end{array}\right)=\frac{60!}{6!(54)!}=50063860 $$

é o número de resultados possíveis. A probabilidade de se acertar com um jogo simples é \(1/50063860\).

Observe que a operação acima pode ser simplificada da seguinte forma:
$$ \frac{60!}{6!(54)!}=\frac{55\times56\times57\times58\times59\times60}{2\times3\times4\times5\times6}=50063860. $$
(Os primeiros \(54\) fatores no numerador são cancelados por \(54!\) no denominador.)

Probabilidade Condicionada

Vamos usar de um exemplo para mostrar a diferença entre escolher objetos de um lote inicial, fazendo ou não a reposição dos objetos retirados após cada escolha.

Exemplo 6: Em um lote com 100 peças, 20 são defeituosas. Retiramos 2 peças e definimos dois eventos: \(\;A=\){1ª peça com defeito} \(B=\){2ª peça com defeito}. Se há reposição da peça retirada temos:
$$P(A)=\frac{20}{100}=\frac{1}{5},\;\;\; P(B)=\frac{1}{5}.$$

Mas, se não há a reposição, após a retirada da primeira peça restam 99, mas não sabemos quantas são defeituosas. Vamos denotar por \(P(B|A)\) = a probabilidade condicionada do evento \(B,\) tendo ocorrido o evento \(A.\) Se a primeira peça tinha defeito, restam 19 peças com defeito em um lote de 99, e \(P(B|A)=\frac{19}{99}\).

Como \(A\) ocorreu, o espaço amostral fica reduzido. Observe ainda que a probabilidade de \(B\) se \(A\) não tiver ocorrido é \(P(B|\overline{A})=\frac{20}{99}\).

Exemplo 7: Ex.: Dois dados são lançados e representamos o resultado por \(\left(x_{1},\,x_{2}\right).\) O espaço amostral é

$$
S=\left\{ \begin{array}{cccc}
(1,1) & (1,2) & \ldots & (1,6) \\
(2,1) & (2,2) & \ldots & (2,6) \\
\vdots & & & \vdots \\
(6,1) & (6,2) & \ldots & (6,6)
\end{array}\right\},
$$
consistindo de 36 eventos simples. Considere 2 eventos: \(A\) onde a soma dos dados é 10; \(B\) onde o primeiro resultado é maior que o segundo:

$$
\begin{array}{rl}
A= & \{(x_1,x_2)|x_1 + x_2=10\} = \{(4,6),(5,5),(6,4)\} \\ & \\
B= & \left\{(x_1,x_2)|x_1 \gt x_2\right\} \\
= & \left\{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),\right. \\
& \left.(5,2),(5,3),(5,4),(6,1),(6,2),(6,3),(6,4),(6,5)\right\}
\end{array}
$$

A probabilidade de ocorrerem \(A\) e \(B\) são, respectivamente,
$$ P\left(A\right)=\frac{3}{6},\;\;P(B)=\frac{15}{36},$$
enquanto a probabilidade condicionada de ocorrer \(B\) tendo ocorrida \(A\) é $$ P(B|A)=\frac{1}{3}. $$ O espaço amostral se reduz para \(A={(4,6),\,(5,5),\,(6,4)}\) e, entre estes eventos apenas \((6,4)\) é favorável. Da mesma forma a probabilidade de ocorrer \(A\) tendo ocorrido \(B\) é
$$ P(A|B)=\frac{1}{15}, $$

pois \(\text{ord}(B)=15\) e apenas o evento \(\left(6,4\right)\) é favorável. Observe ainda que a probabilidade de que \(A\) e \(B\) ocorram simultaneamente é
$$ P(A\cap B)=\frac{1}{36}.$$

Note que:
$$P(A|B)=\frac{P(A\cap B)}{P(B)}=\frac{1}{36}\frac{36}{15}=\frac{1}{15}$$
$$P(B|A)=\frac{P(B\cap A)}{P(A)}=\frac{1}{36}\frac{36}{3}=\frac{1}{3}$$

Isto sugere a definição de probabilidade condicionada (que pode ser formalmente demostrada):

$$ P(B|A)=\frac{P(A\cap B)}{P(A)} $$

para \(P(A)\gt 0\). É claro que, se \(P(A)=0\), \(P(B|A)=0\). Podemos então escrever

$$ P(A\cap B)=P(B|A)P(A)=P(A|B)P(B). $$

Exemplo 8: Entre 100 calculadoras temos aparelhos novos (N) e usados (U), eletrônicos (E) e manuais (M), de acordo com a tabela:

Uma é escolhida ao acaso e verifica-se que é nova. Qual probabilidade de que ela seja eletrônica?

Como já se vericou que a calculadora é nova, o espaço amostral fica reduzido à apenas 70 unidades. Nele apenas 40 calculadoras são eletrônicas. Usando a definição de probabilidade condicionada temos

$$ P(E|N)=\frac{P(E\cap N)}{P(N)}=\frac{40/100}{70/100}=\frac{4}{7}.$$

Exemplo 9: Retomamos a situação das 100 peças, sendo 20 com defeito. Qual a probabilidade de se escolher 2, sem reposição, e serem ambas defeituosas?

Definimos os eventos A = {1ª com defeito}; B = {2ª com defeito}. O evento favorável é \(A\cap B\) e sua probabilidade é

$$ P(A\cap B)=P(B|A)P(A)=\frac{19}{99}\frac{20}{100}=\frac{19}{495}. $$

Uma observação será útil antes de prosseguirmos: seja \(\{M_{i}\}\) \(i=1,\ldots,\,k,\) é uma partição de \(S\). Podemos decompor \(B\) em partes mutuamente excludentes

$$ A=(A\cap M_{1})\cup\cdots\cup(A\cap M_{k}). $$

Portanto:

$$ P(A)=\sum_{i}P(A\cap M_{i})=\sum_{i}P(A|M_{i})P(M_{i}). $$


Exemplo 10: Na mesma situação anterior, qual a probabilidade de, escolhendo 2 peças, a segunda ter defeito? Novamente temos \(A=\) {1ª com defeito}; \(B=\) {2ª com defeito}. Queremos calcular \(P(B)\). Podemos escrever \(B\) como a união disjunta \(B=\left(B\cap A\right)\cup\left(B\cap\bar{A}\right)\). Então

$$
\begin{array}{rl}
P(B)= & P\left(B\cap A\right)+P\left(B\cap\bar{A}\right)=P(B|A)P(A)+P(B|\bar{A})P(\bar{A}) \\
= & \frac{19}{99}\frac{1}{5}+\frac{20}{99}\frac{4}{5}=\frac{1}{5}.
\end{array}
$$

Exemplo 11: Um produto é manufaturado por 3 fábricas diferentes que chamaremos de \(F_{1},\,F_{2}\)e \(F_{3}\). A quantidade de peças produzida por cada fábrica e a porcentagem de defeitos são exibidas na tabela:

Fábrica produção/dia peças com defeito
F1 2 2%
F2 1 2%
F3 1 4%

Após um certo tempo a produção das 3 fábricas é colocada em um depósito e uma peça é retirada ao acaso. Qual é a probabilidade dela ser defeituosa? Vamos definir os seguintes eventos \(D=\) {peça com defeito}; \(F_i\) = {peça fabricada por \(F_i\)}, \(i=1,2,3\). Podemos usar a união disjunta \(D=\cup_{i}(D\cap F_{i})\) para calcular

$$
\begin{array}{rl}
P(A)=& \sum_{i}P(D\cap F_{i})=\sum_{i}P(D|F_{i})P(F_{i})\\
=& P(D|F_{1})P(F_{1})+P(D|F_{2})P(F_{2})+P(D|F_{3})P(F_{3}) \\
=& 00,2\frac{1}{2}+00,2\frac{1}{4}+00,4\frac{1}{4}=0,025.
\end{array}
$$

Podemos ainda fazer a seguinte pergunta: Suponha que a peça retirada é defeituosa. Qual é a probabilidade de que ela tenha sido produzida na \(F_1?\) Queremos, portanto, \(P(F_{1}|D)\). Usamos

$$
\begin{array}{rl}
P(F_1|D)= & \frac{P(D|F_1)P(F_1)}{P(D)}=\frac{P(D|F_1)P(F_{1})}{\sum_{i=1}^{3}P(D|F_i)P(F_i)}= \\
& \frac{(0,02)\frac{1}{2}}{(0,02)\frac{1}{2}+(0,02)\frac{1}{4}+(0,04)\frac{1}{4}}=0,04,
\end{array}
$$

onde, na segunda igualdade, foi usado o fato de que \({F_i}\) é uma partição do espaço amostral.

Teorema de Bayes

Seja \({B_i}\) uma partição do espaço amostral e \(A\) um evento de \(S.\) Então
$$ P(B_i|A)=\frac{P(A|B_i)\,P(B_i)}{\sum_{k=1}^{3}P(A|B_k)\,P(B_k)},\:i=1,…,\,n. $$

Eventos independentes

Dois eventos são ditos independentes se a ocorrência de um não afeta a probabilidade de ocorrência do outro.

Exemplo 12: Um dado é jogado 2 vezes. Definimos os eventos \(A=\){1º mostra número par}, \(B=\){2º cai 5 ou 6}. Vemos que são dois eventos não relacionados. Temos

$$ P(A)=\frac{1}{2},\;\; P(B)=\frac{1}{3}.$$
$$ P(A\cap B)=\frac{6}{36}=\frac{1}{6}, $$

pois \(A\cap B=\{(2,5),(2,6),(4,5),(4,6),(6,5),(6,6)\}\). Consequentemente

$$ P(A|B)=\frac{P(A\cap B)}{P(B)}=\frac{1}{2}. $$

Observamos que \(P(A|B)=P(A).\) Da mesma forma \(P(B|A)=P(B).\)

Definição: \(A\)e \(B\)são eventos independentes se, e somente se, \(P(A\cap B)=P(A)P(B).\)

Uma boa revisão sobre a Teoria dos Conjuntos pode ser vista em Gigamatematica: Conjuntos Enumeráveis

5 – Singularidades e Resíduos

Como vimos a analiticidade de uma função complexa é uma característica bastante restritiva. é possível que uma função seja analítica em uma região e não seja em outra, ou que deixe de ser analítica apenas em um número finito de pontos de seu domínio.

Definição: Se uma função \(f\) é analítica em uma região \(R\), exceto em um subconjunto \(S\) de \(R\) então os pontos de \(S\) são chamandos de pontos singulares desta função ou, simplesmente, singularidades. Como exemplo, \(z_0=0\) é singularidade de \(1/z\) e \(1/z^{2}\), enquanto \(z_0=\pm i\) são as singularidares de \(1/(z^{2}+1)\). Por outro lado a função \(f(z) =\left\vert z\right\vert^{2}\) não tem nenhum ponto singular já que não é analítica em nenhum ponto de seu domínio. As séries de Laurent representam o instrumento adequado para o estudo das sigularidades de uma função.

Singularidades isoladas

Se \(f\) é analítica em alguma vizinhança de um ponto \(z_0\), exceto no próprio ponto \(z_0\), então dizemos que \(z_0\) é uma singularidade isolada da função \(f\). Como exemplo temos que a função
$$
f(z) =\frac{1}{1-\cos z}
$$
é singular nos pontos \(z=2n\pi,\;\;n=0,\pm 1,\ \pm 2,\cdots\), que são os pontos onde o denominador se anula. Se \(z_0\) é uma singularidade isolada de uma função \(f\) então ela admite o desenvolvimento de Laurent
$$
f(z)=\sum\limits_{n=1}^{\infty}\frac{a_{-n}}{(z-z_0)^{n}}+\sum\limits_{n=0}^{\infty}a_{n}(z-z_0)^{n}=\sum\limits_{n=-\infty }^{\infty }a_{n}(z-z_0)^{n},
$$
válido na região \(0\lt \left\vert z-z_0\right\vert \lt r,\;\) a chamada vizinhança perfurada de \(z_0\). Os coeficientes da expansão são, como já vimos,

(1)

$$
a_{n}=\frac{1}{2\pi i}\oint\limits_{C}\frac{f(z) dz}{(z-z_0)^{n+1}},
$$
onde \(C\) é um contorno fechado que envolve \(z_0\) uma vez, no sentido positivo. Em particular estaremos interessados em obter o coeficiente \(a_{-1}\), definido abaixo, por um motivo que logo ficará claro.

Definição: Ao coeficiente \(a_{-1}\) da expansão de Laurent para uma função \(f\) analítica em uma vizinhança perfurada de \(z_0\) chamamos de resíduo de \(f\) no ponto singular isolado \(z_0\) e denotamos

(2)

$$
\text{Res}( f,z_0) =a_{-1}=\frac{1}{2\pi i}\oint\limits_{C}f(z) dz.
$$

A expressão acima fornece uma forma para o cálculo de uma integral de contorno com integrando complexo. Para isto basta encontrar a expansão de Laurent em séries para o integrando e identificar o resíduo da função em seu ponto singular Embora pela equação (2) acima já sabemos que \(\oint\nolimits_{C}f(z) dz=2\pi i\text{Res}( f,z_0)\), pode ser esclarecedor, apesar de repetitivo, mostrar o seguinte procedimento. Se \(z_0\) é ponto singular isolado de \(f\) então esta função admite a série de Laurent
$$
f(z) =\sum\limits_{n=-\infty }^{\infty }a_{n}(z-z_0)^{n}.
$$
Dentro da região de convergência da série ela pode ser integrada termo a termo,

(3)

$$
I=\oint\limits_{C}f(z) dz=\sum\limits_{n=-\infty }^{\infty}a_{n}\oint\limits_{C}(z-z_0)^{n}dz.
$$
Fazendo \(z-z_0=\delta e^{i\theta }\) temos \(dz=i\delta e^{i\theta }d\theta\) e, caso \(n\neq -1\),
$$
\oint\limits_{C}(z-z_0)^{n}dz=i\delta^{n+1}\int_0^{2\pi}e^{i\theta ( n+1)}d\theta =i\delta^{n+1}\left. \frac{e^{i\theta ( n+1)}}{i( n+1)}\right\vert _0^{2\pi }=\frac{\delta^{n+1}}{n+1}\left[ e^{2( n+1) i\pi }-1\right] =0.
$$
O único termo não nulo ocorre para \(n=-1\),
$$
\oint\limits_{C}\frac{dz}{z-z_0}=2\pi i.
$$
Como já afirmado, a integral avaliada em (3) é
$$
\oint\limits_{C}f(z) dz=2\pi i\ a_{-1}.
$$

O uso do cálculo de resíduos para calcular integrais sobre contornos fechados de uma função que envolve pontos singulares isolados é exemplificado a seguir.

Exemplo 1: Podemos calcular a integral
$$
I=\oint\limits_{\left\vert z\right\vert =2}e^{-z}(z-1)^{-2}dz
$$
simplesmente encontrando o resíduo do integrando. A única singularidade deste integrando é \(z_0=1\), um ponto que está na região interior ao contorno de integração. Devemos então encontrar a série de Laurent para o integrando. Para isto observe que
$$
e^{-z}=e^{-z+1-1}=e^{-1}e^{-(z-1)
}=e^{-1}\sum\limits_{n=0}^{\infty }\frac{(-1)^{n}}{n!}(
z-1)^{n},
$$
e, portanto,
$$
f=\frac{e^{-z}}{(z-1)^{2}}=\frac{e^{-z}}{(z-1)^{2}}\left[ 1-(z-1) +\frac{(z-1)^{2}}{2!}-\frac{(z-1)^{3}}{3!}+\ldots \right],
$$
$$
=\frac{e^{-z}}{(z-1)^{2}}\left[ \frac{1}{(z-1)^{2}}-\frac{1}{(z-1)}+\frac{1}{2!}-\frac{(z-1)}{3!}+\ldots \right]
$$
de onde ser observa que \(a_{-1}=\text{Res}( f,1) =-e^{-1.}\) Portanto temos que
$$
\oint\limits_{\left\vert z\right\vert =2}e^{-z}(z-1)^{-2}dz=2\pi i\text{Res}( f,1) =-\frac{2\pi i}{e}.
$$

Exemplo 2: Para calcular \(\oint\nolimits_{\left\vert z\right\vert =1}\exp ( 1/z^{2}) dz\) observamos que a única singularidade do integrando é \(z=0\), um ponto interior ao contorno de integração. Observe que, fazendo \(u=1/z^{2}\) temos
$$
e^{u}=\sum\limits_{n=0}^{\infty }\frac{u^{n}}{n!}=\sum\limits_{n=0}^{\infty }\frac{1}{n!}\frac{1}{z^{2n}}=1+\frac{1}{z^{2}}+\frac{1}{2!z^{4}}+\frac{1}{3!z^{6}}+\ldots ,
$$
convergente em \(\left\vert z\right\vert \gt 0\). O resíduo é \(\text{Res}( f,0) =0\) e
$$
\oint\limits_{\left\vert z\right\vert =1}\exp ( 1/z^{2}) dz=2\pi i\text{Res}( f,0) =0.
$$

O teorema dos resíduos

Enunciamos a seguir o teorema dos resíduos, útil para o cálculo de integrais realizada sobre um caminho que circula um número finito de singularidades. Observamos que, se uma função possui um número finito de pontos singulares em um domínio então estes pontos são necessariamente isolados.

Teorema: Seja \(f\) uma função analítica sobre o contorno fechado \(C\) e em seus pontos interiores, exceto em um número finito de pontos, \(z_{1},\ z_{2},\ldots ,\ z_{n}\), interiores a \(C\). Então
$$
\oint\limits_{C}f(z) dz=2\pi i\sum\limits_{k=1}^{n}\text{Res}( f,z_{k}) ,
$$
onde o contorno é percorrido uma vez, no sentido positivo e \(\text{Res}( f,z_{k})\) é o resíduo da função \(f\) no ponto \(z_{k}\).

Demonstração: Como os pontos singulares são isolados podemos construir círculos \(C_{k}\) com centro em \(z_{k}\) e raios suficientemente pequenos para que cada círculo envolva apenas a singularidade em seu centro. Em seguida construimos o caminho \(\gamma =C\cup (-C_{1}) \cup(-C_{2}) \cup \ldots \cup (-C_{k}),\) como mostrado na figura 1.

Figura 1.

A função \(f\) é analítica em \(\gamma\) e seu interior de forma que
$$
0=\oint\limits_{\gamma }f(z) dz=\oint\limits_{C}f(
z) dz-\oint\limits_{C_{1}}f(z)
dz-\oint\limits_{C_{2}}f(z) dz-\ldots
-\oint\limits_{C_{n}}f(z) dz
$$
ou seja
$$
\oint\limits_{C}f(z)
dz=\sum\limits_{k=1}^{n}\oint\limits_{C_{1}}f(z) dz=2\pi
i\sum\limits_{k=1}^{n}\text{Res}( f,z_{k}).
$$

Exemplo 3: Para mostrar a utilidade do teorema acima vamos calcular
$$
\oint\limits_{\left\vert z\right\vert =2}\frac{5z-2}{z(z-1)}dz.
$$
Observamos, inicialmente, que os pontos sigulares do integrando são \(z=0\) e \(z=1\), ambos interiores à região circundada por \(C\). Devemos determinar os resíduos do integrando nestes pontos. Em torno de \(z=0\) a função \(1/( 1-z)\) é analítica e tem série de Taylor dada por
$$
\frac{1}{z-1}=-\sum\limits_{n=0}^{\infty }z^{n},\ \left\vert z\right\vert \lt 1.
$$
O integrando pode ser escrito como
$$
\frac{5z-2}{z}\frac{1}{z-1}=\frac{2-5z}{z}\sum\limits_{n=0}^{\infty}z^{n}=( \frac{2}{z}-5) \sum\limits_{n=0}^{\infty }z^{n}=
$$
$$
=2\sum\limits_{n=0}^{\infty }z^{n-1}-5\sum\limits_{n=0}^{\infty }z^{n}=\frac{2}{z}-3\sum\limits_{n=0}^{\infty }z^{n},
$$
válida em \(0\lt \left\vert z\right\vert \lt 1\). Concluímos que \(\text{Res}( f,0) =2\).

Por outro lado, na vizinhança de \(z=1\) temos que \(1/z\) é a função analítica. Queremos escrever o integrando em potências de \((z-1)\) para descobrir qual é o seu resíduo neste ponto. Fazemos
$$
\frac{1}{z}=\frac{1}{z-1+1}=\sum\limits_{n=0}^{\infty }(-1)^{n}(z-1)^{n},\;\; \left\vert z-1 \right\vert \lt 1,
$$
e, portanto,
$$
\frac{5z-2}{z(z-1)}=( \frac{5z-5+3}{z-1}) \frac{1}{z}=( 5+\frac{3}{z-1}) \sum\limits_{n=0}^{\infty }(-1)^{n}(z-1)^{n}=
$$
$$
=5\sum\limits_{n=0}^{\infty }(-1)^{n}(z-1)
^{n}+3\sum\limits_{n=0}^{\infty }(-1)^{n}(z-1)
^{n-1}=\frac{3}{z-1}+2\sum\limits_{n=0}^{\infty }(-1)
^{n}(z-1)^{n}.
$$
Na última igualdade foi feito:
$$
3\sum\limits_{n=0}^{\infty }(-1)^{n}(z-1)^{n-1}=\frac{3}{z-1}+3\sum\limits_{n=1}^{\infty }(-1)^{n}(
z-1)^{n-1}=\frac{3}{z-1}+3\sum\limits_{n=0}^{\infty }(
-1)^{n+1}(z-1)^{n}.
$$
O resíduo neste ponto é \(\text{Res}( f,1) =3\) e
$$
\oint\limits_{\left\vert z\right\vert =2}\frac{5z-2}{z(z-1)}dz=2\pi i\left[ \text{Res}( f,0) +\text{Res}(
f,1) \right] =10\pi i.
$$

Observe que, neste caso, seria mais fácil escrever o integrando usando frações parciais,
$$
\frac{5z-2}{z(z-1)}=\frac{2}{z}+\frac{3}{z-1}
$$
e, portanto,
$$
\oint\limits_{\left\vert z\right\vert =2}\frac{5z-2}{z(z-1)}dz=2\oint\limits_{\left\vert z\right\vert =2}\frac{dz}{z}+3\oint\limits_{\left\vert z\right\vert =2}\frac{dz}{z-1}=10\pi i.
$$
Nem sempre é possível, no entanto, proceder desta última forma e, frequentemente a integração pelo método dos resíduos representa uma ferramenta poderosa para a solução de integrais definidas, como veremos.

Singularidades tipo pólo

Se a série de Laurent de uma função
$$
\begin{array}{ccc}
f(z)=& \underbrace{\sum\limits_{n=1}^{\infty }\frac{a_{-n}}{(z-z_0)^{n}}} & +\underbrace{\sum\limits_{n=0}^{\infty}a_{n}(z-z_0)^{n}}, \\
& \text{ parte principal} & \text{ parte analítica}
\end{array}
$$
é composta por um número finito de termos na parte principal então existe um maior inteiro \(m\) tal que \(a_{-m}\) seja não nulo e

(4)

$$
f(z)=\frac{a_{-1}}{z-z_0}+\frac{a_{-2}}{(z-z_0)^{2}}+\ldots +\frac{a_{-m}}{(z-z_0)^{m}}+\sum\limits_{n=0}^{\infty }a_{n}(z-z_0)^{n}.
$$
Neste caso \(z_0\) é dito um pólo de ordem \(m\). Se \(m=1\) então o pólo é simples. Se a parte principal tem infinitos termos o pólo é dito essencial.

Exemplo 4: A função
$$
f(z) =\frac{z^{2}+1}{z-1}
$$
tem um pólo simples em \(z=1\). Para confirmar isto fazemos
$$
f(z) =\frac{(z-1)^{2}+2z}{z-1}=(z-1) +\frac{2z-2+2}{z-1}=(z-1) +2+\frac{2}{z-1}.
$$
Além disto \(\text{Res}( f,~1) =2\).

Exemplo 5: A função
$$
f(z) =\frac{z^{2}-2z+3}{z-2}
$$
pode ser escrita como
$$
f(z) =\frac{(z-2)^{2}+2z-1}{z-2}=(z-2) +\frac{2z-4+3}{z-2}=(z-2) +2+\frac{3}{z-2}.
$$
Então \(z=2\) é um pólo simples e \(\text{Res}( f,~2)=3\).

Exemplo 6: A seguinte função tem um pólo em \(z=0\) de ordem 3 e \(\text{Res}( f,0) =0:\)
$$
f(z) =\frac{\text{ senh }z}{z^{4}}=\frac{1}{z^{4}}(z+\frac{z^{3}}{3!}+\frac{z^{5}}{5!}+\frac{z^{7}}{7!}+\ldots ) =\frac{1}{z^{3}}+\frac{1}{3!}+\frac{z}{5!}+\frac{z^{3}}{7!}+\ldots .
$$
Já o \(\cosh ( 1/z)\) tem uma singularidade essencial em \(z=0\) e resíduo nulo:
$$
\cosh \left( \frac{1}{z} \right) =\sum\limits_{n=0}^{\infty }\frac{1}{(2n) !}\frac{1}{z^{2n}}.
$$
Recordamos que
$$
\cosh z=\frac{1}{2}( e^{z}+e^{-z}) =\frac{1}{2}(
\sum\limits_{n=0}^{\infty }\frac{z^{n}}{n!}+\sum\limits_{n=0}^{\infty
}(-1)^{n}\frac{z^{n}}{n!}) =
$$
$$
=\sum\limits_{n=\text{par}}^{\infty }\frac{z^{n}}{n!}=\sum\limits_{n=0}^{\infty }\frac{z^{2n}}{( 2n) !}.
$$

Suponha que \(f\) tem um pólo de ordem \(m\) em \(z_0\). Neste caso a função
$$
\phi (z) =(z-z_0)^{m}f(z) ,
$$
definida em \(0 \lt |z-z_0|\lt r_{1}\) é uma função analítica definida em uma vizinhança de \(z_0\), exceto no próprio \(z_0\), uma vez que \(f\) não é definida neste ponto. Devido à expressão de Laurent para \(f\), dada em (4) podemos escrever

(5)

$$
\phi (z) =a_{-1}(z-z_0)^{m-1}+a_{-2}(z-z_0)^{m-2}+\ldots +a_{-m}+\sum\limits_{n=0}^{\infty }a_{n}(z-z_0)^{m+n},
$$
onde \(a_{-m}\neq 0\). Se definirmos esta função no ponto \(z_0\) como \(\phi (z_0) =a_{-m}\) então a representação em (5), sendo convergente, é válida na vizinhança de \(z_0\) incluindo o próprio ponto \(z_0\), definindo uma função analítica \(\phi\). A definição de \(\phi (z_0)\) dada acima é equivalente à
$$
\phi (z_0) =\lim_{z\rightarrow z_0}(z-z_0)^{m}f(z) =a_{-m}.
$$
Como \(a_{-m}\) é finito e não nulo concluímos que \(|f(z) |\) deve necessariamente tender a infinito quando \(z\rightarrow z_0\).

Um outro tipo de singularidade é a denominada ponto singular removível: se uma função \(\phi\) pode se tornada analítica em seu ponto singular \(z_0\) simplesmente por meio da atribuição de um valor conveniente para \(\phi (z_0)\) então dizemos que \(z_0\) é um ponto singular removível de \(\phi\). Um exemplo disto é a função \(\phi (z) =(z-z_0)^{m}f(z)\), definida à partir de \(f\), uma função com pólo de ordem \(m\) em \(z_0\). Observe que esta função tem representação em séries de Taylor dada por (5), de forma que

(6)

$$
a_{-1}=\frac{\phi^{( m-1)}(z_0)}{(m-1)!}.
$$
Em particular, quando o pólo é simples, \(m=1\) e \(a_{-1}\) é o resíduo da função \(f\) no ponto \(z_0\) temos que
$$
a_{-1}=\phi (z_0) =\lim_{z\rightarrow z_0}(z-z_0) f(z).
$$
Por outro lado, se uma função \(f\) é tal que o produto
$$
(z-z_0)^{m}f(z) =\phi (z)
$$
possa ser definido em \(z_0\) de modo a ser analítico neste ponto podemos encontrar a representação de Taylor
$$
(z-z_0)^{m}f(z) =\phi (z)
=\sum\limits_{n=0}^{\infty }\frac{\phi^{( n)}(z_0)}{n!}(z-z_0)^{n}.
$$
Um uma vizinhança de \(z_0\), para pontos distintos de \(z_0\) temos
$$
f(z) =\frac{\phi (z)}{(z-z_0)^{m}}=\sum\limits_{n=0}^{\infty }\frac{\phi^{( n)}(z_0)}{n!}(z-z_0)^{n-m}=\sum\limits_{n=-m}^{\infty }\frac{\phi^{(n+m)}(z_0)}{( n+m) !}(z-z_0)^{n}.
$$
Concluimos dai que \(f\) tem um pólo de ordem \(m\) em \(z=z_0\) e que seu resíduo é dado pela fórmula (6). Estas considerações implicam em um teste para a existências de pólos, descrito no teorema que se segue.

Teorema: Se \(f\) uma função singular no ponto \(z_0\) mas, para algum inteiro \(m\) a função
$$
\phi (z) =(z-z_0)^{m}f(z) ,\;\; \phi (z_0) \neq 0,
$$
é analítica em \(z_0\) então \(z_0\) é pólo de ordem \(m\) de \(f\) e

(7)

$$
\text{Res}(f,~z_0) =\left\{
\begin{array}{ll}
\phi (z_0) =\lim_{z\rightarrow z_0}(z-z_0)f(z) ,\; & \text{ se }\; m=1, \\
\frac{\phi^{(m-1)}(z_0)}{(m-1)!}, & \text{se }\; m \gt 1.
\end{array}
\right.
$$
Note que, em particular, as condições do teorema são satisfeitas se
$$
f(z) =\frac{\phi (z)}{(z-z_0)^{m}},\;\;m=1,2,\ldots ,
$$
e a função \(\phi\) é analítica em \(z_0\), com \(\phi (z_0)\) não nulo.

Exemplo 7: A função
$$
f(z) =\frac{\exp ( -2z)}{z^{3}}
$$
satisfaz às condições do teorema. Ela tem um ponto singular em \(z_0=0\), e
$$
\phi (z) =\exp ( -2z)
$$
é analítica e não nula em \(z=0\). Como \(m=3\) seu resíduo neste ponto, de acordo com a fórmula (7), é
$$
\text{Res}( f,\ 0) =\frac{\phi^{( 2)}(0)}{2!}=2.
$$

Exercícios :

1. Encontre os pólos, suas ordens e os resíduos das funções para cada pólo:
$$
\begin{array}{lll}
\text{ a. }\;\; \frac{z+4}{z(z^{2}+1)} & \text{ b. }\;\;
\frac{\text{sen }z}{z^{3}(z-\pi )} & \text{ c. }\;\;\frac{1}{z\text{sen }^{2}\pi z} \\
\text{ d. }\;\;\frac{1-e^{z}}{z^{4}\text{sen }( 1+z)} &
\text{ e. }\;\;\frac{e^{z}}{z( 1-e^{-z})} & \text{ f. }\;\;\frac{1}{(e^{iz}-1)^{2}}\; \\
\text{ g. }\;\;\frac{\cosh z}{z( 1-\cos z)} & \text{ h. }\;\;\frac{\text{ senh }z}{z\text{sen }^{2}(z+\pi /2)}
\end{array}
$$

2. Mostre que \(z=0\) é singularidade removível em cada uma das funções abaixo. Determine o valor a se atribuir em \(z=0\) para que as funções sejam analíticas.
$$
\begin{array}{lll}
\text{ a. }\;\; \frac{z}{e^{z}-1} & \text{ b. }\;\;\frac{e^{z}-1}{\text{sen }2z} & \text{ c. }\;\;\frac{\cosh 2z-1}{\text{sen }^{2}z} \\
\text{ d. }\;\;\frac{1}{e^{z}-1}-\frac{1}{z} & \text{ e. }\;\;\frac{1}{z}-\frac{1}{\text{sen }z} & \text{ f. }\;\;\frac{1}{(e^{iz}-1)^{2}} \\
\text{ g. }\;\;\frac{\cosh z}{z( 1-\cos z)} & \text{ h. }\;\;\frac{\text{ senh }z}{z\text{sen }^{2}(z+\pi /2)} &
\end{array}
$$

3. Encontre a parte principal da função \(f(z) =1/z(z-i)^{2}\) em relação ao pólo \(z=i\).

Algumas respostas e sugestões:

1a. \(z=0,\; i,\; -i,\;\) de ordens \(1,\, 2\) e \(2\) respectivamente.

1c. \(z=0\) de ordem 3, \(z=\pm 1,\pm 2, \pm 3, \ldots \) de ordem \(2\), cada.

1e. \(z=0\) de ordem 2, \(z=2k\pi , k\neq 0\) inteiro, de ordem 1, cada.

1g. \(z=0\) de ordem 3, \(z=2k\pi ,\; k\neq 0\;\) inteiro, de ordem 2, cada.

3. \(\frac{-i}{(z-i)^{2}}+\frac{1}{z-i}\)

Cálculo de Integrais Impróprias

Uma aplicação importante para o cálculo de integrais complexas usando a teoria dos resíduos está na avaliação de integrais impróprias com integrandos reais. Podemos desde já fornecer um exemplo deste uso.

Exemplo 8: Vamos usar o teorema dos resíduos para calcular a integral
$$
I=\int_{-\infty }^{\infty }\frac{dx}{x^{2}+1}.
$$
Embora esta seja uma integral real, efetuada sobre todo o eixo real, ela pode ser colocada como parte de uma integração no plano complexo, mais fácil de ser calculada. Para ver isto considere a integral
$$
\oint\limits_{C}\frac{dz}{z^{2}+1}
$$
onde \(C\) é o contorno \(C=C_{R}\cup L\), representado na figura 2. \(C_{R}\) é o arco de circunferência de raio \(R\) em \(y\gt 0\), enquanto \(L\) é o segmento de reta de \(-R\) até \(R\) sobre o eixo real.

Figura 2.

O integrando é
$$
\frac{1}{z^{2}+1}=\frac{1}{z+i}\frac{1}{z-i}=\frac{1}{2i}\frac{1}{z-i}+\frac{1}{4}\sum ( \frac{i}{2})^{n}(z-i)^{n}
$$
que tem um pólo simples em \(z=i\), o único envolvido pelo contorno, e resíduo, neste ponto \(\text{Res}( f,i) =1/2i\). Alternativamente, usando a fórmula (7) temos que
$$
(z-i) \frac{1}{z^{2}+1}=\frac{1}{z+i}=\phi
$$
que é analítica em \(z=i\). Dai o pólo é simples e
$$
\text{Res}( \frac{1}{z^{2}+1},\ i) =\phi ( i) =\frac{1}{2i}.
$$
Dai concluimos que
$$
\oint\limits_{C}\frac{dz}{z^{2}+1}=\pi .
$$
Observamos que \(\oint\nolimits_{C}=\int_{I}+\int_{C_{R}}\), ou seja,
$$
\pi =\int_{-R}^{R}\frac{dx}{x^{2}+1}+\int_{C_{R}}\frac{dz}{z^{2}+1}.
$$
Resta apenas observar que, no limite \(R\rightarrow \infty\) a segunda integral é nula. Para ver isto note que sobre \(C_{R}\) temos que \(\left\vert z\right\vert =R\) e
$$
\left\vert z^{2}+1\right\vert \geq \left\vert z^{2}\right\vert -1=R^{2}-1,
$$
onde usamos a desigualdade
$$
\left\vert z_{1}+z_{2}\right\vert \geq \left\vert z_{1}\right\vert -\left\vert z_{2}\right\vert .
$$
Como consequência
$$
\left\vert \int_{C_{R}}\frac{dz}{z^{2}+1}\right\vert \leq \frac{1}{R^{2}-1}\int_{C_{R}}\left\vert dz\right\vert =\frac{\pi R}{R^{2}-1}\underset{R\rightarrow \infty }{\longrightarrow }0.
$$
Resta apenas a integral que queríamos calcular:
$$
\int_{-\infty }^{\infty }\frac{dx}{x^{2}+1}=\pi .
$$

O procedimento mostrado acima pode ser generalizado para o cálculo de integrais na forma de
$$
\int_{-\infty }^{\infty }\frac{P(x)}{Q(x)}dx
$$
onde \(P\) e \(Q\) são polinômios que diferem, em graus, da seguinte forma
$$
\text{grau }Q-\text{grau }P=m\geq 2.
$$
Como antes, tomamos as extensões das funções envolvidas, \(P(z)\) e \(Q(z)\) e construímos um contorno \(C=C_{R}\cup L\), idêntico ao da figura 2, usada no exemplo anterior. Como \(z^{m}P(z)\) e \(Q(z)\) têm o mesmo grau, o limite
$$
\lim_{z\rightarrow \infty }\frac{z^{m}P(z)}{Q(z)}=M
$$

é finito e não nulo. Em outras palavras, para \(|z|=R\) suficientemente grande temos que
$$
\left\vert \frac{P(z)}{Q(z)}\right\vert \leq \frac{M}{\left\vert z\right\vert^{m}}=\frac{M}{R^{m}}.
$$
A integração sobre o arco de circunferência se anula pois
$$
\left\vert \int_{C_{R}}\frac{P(z)}{Q(z)}dz\right\vert \leq \frac{M}{R^{m}}\int_{C_{R}}\left\vert dz\right\vert =\frac{\pi MR}{R^{m}}=\frac{\pi M}{R^{m-1}},
$$
que se anula quando \(R\rightarrow \infty\) pois \(m\geq 2\). Neste limite resta, portanto,
$$
\int_{-\infty }^{\infty }\frac{P(x)}{Q(x)}dx=\oint_{C}\frac{P(z)}{Q(z)}dz=2\pi i\sum_{k=1}^{n}\text{Res}( \frac{P(z)}{Q(z)},z_{k}),
$$
onde a soma é feita sobre todos os pólos do integrando no semiplano \(y\gt 0\).

Exercícios :

1. Calcule as integrais indefinidas:
$$
\begin{array}{lll}
\text{ a. }\;\; \int_{-\infty }^{\infty }\frac{dx}{x^{4}+1} &
\text{ b. }\;\; \int_{-\infty }^{\infty }\frac{dx}{ax^{2}+bx+c}, & a,b,c\in \mathbb{R}, b^{2}\lt 4ac. \\
\text{ c. }\;\; \int_0^{\infty }\frac{x^{2}dx}{x^{4}+9} &
\text{ d. }\;\; \int_{-\infty }^{\infty }\frac{dx}{x^{2}-x+1} &
\text{ e. }\;\; \int_0^{\infty }\frac{dx}{x^{6}+1}\; \\
\text{ f. }\;\; \int_{-\infty }^{\infty }\frac{xdx}{(x^{2}+4x+13)^{2}} &
\text{ g. }\;\; \int_0^{\infty }\frac{x^{2}dx}{(x^{2}+a^{2})^{2}}, a\gt 0, &
\text{ h. }\;\; \int_0^{\infty }\frac{x^{2}+1}{x^{4}+1}dx
\end{array}
$$

2) Mostre que \(\int_0^{\infty }\frac{dx}{(x^{2}+a^{2})(x^{2}+b^{2})}=\frac{\pi }{2ab( a+b)}\).

Algumas respostas e sugestões:

1a. \(\pi /\sqrt{2}\)
1b. \(2\pi /\sqrt{4ac-b^{2}}\)
1c. Observe que o integrando é par, logo \(\int_0^{\infty }=\frac{1}{2}\int_{-\infty }^{\infty }\).
1d. \(\pi \sqrt{2}/4\sqrt{3}\)
1f. \(-\pi /27\)
1g. \(\pi /4a\).

4 – Séries de Potências

Revisão: Sequências e Séries

Antes de iniciarmos o estudo de séries de números e funções complexas faremos uma revisão destes conceitos utilizando números e funções reais, de variáveis reais. Para maiores detalhes consulte qualquer livro texto de Cálculo II.

Sequências Infinitas

Definiremos uma sequência infinita como um conjunto infinito de números que podem ser colocados em uma relação biunívoca com o conjunto dos números inteiros positivos. Denotaremos por \(\left\{a_n\right\}\) a uma sequência, sendo \(a_n\), com \(n=1,2,..\). os elementos individuais desta sequência.

Exemplo 1: Considere \(\left\{a_{n}\right\}\) a sequência com termo genérico \(a_{n}=1/n\). Neste caso
$$
\left\{a_{n}\right\} =\left\{1,\frac{1}{2},\frac{1}{3},\cdots \right\}.
$$
Observe que os termos desta sequência se aproximam de \(0\) para \(n\) suficientemente grande.

Definição: Dizemos que a sequência converge para um número \(L\), ou tem limite \(L\), se, dado qualquer número \(\varepsilon \gt 0\) existe um número \(N\) tal que
$$
n\gt N\Rightarrow \left\vert a_{n}-L\right\vert \lt\varepsilon.
$$
Usaremos como notação
$$
L=\lim_{n\rightarrow \infty }a_{n},\;\;\;\text{ ou }\;\; a_{n}\rightarrow L.
$$
Observe que, se \(\left\vert a_{n}-L\right\vert \lt\varepsilon\) então
$$
-\varepsilon \lt a_{n}-L\lt\varepsilon \Longleftrightarrow L-\varepsilon \lt a_{n}\lt L+\varepsilon.
$$
Portanto a convergência de uma sequência para um valor \(L\) significa que \(a_{n}\) fica arbitrariamente próximo de \(L\) quando se toma \(n\) suficientemente grande. Se uma sequência não converge para nenhum número dizemos que ela diverge.

Exemplo 2: A sequência do exemplo 1, \(a_n=1/n\) converge para \(L=0\).

Exemplo 3: A seguinte sequência converge para \(L=2/3\)
$$
a_{n}=\frac{2n^{2}+n-1}{3n^{2}-n}.
$$
Para ver isto dividimos o numerador e o denominador por \(n^{2}\),
$$
L=\lim_{n\rightarrow \infty }\frac{2n^{2}+n-1}{3n^{2}-n}=\lim_{n\rightarrow \infty }\frac{2+1/n-1/n^{2}}{3-1/n}=\frac{2}{3},
$$
onde usamos o fato de que \(1/n\rightarrow 0\) e \(1/n^{2}\rightarrow 0\).

Exemplo 4: A sequência \(\left\{\text{sen }n\right\}\) não converge para nenhum número, oscilando indefinidamente entre \(\,-1\) e \(1\). A sequência \(a_{n}=(n^{2}+1) /n\) também não converge pois tende a infinito com \(n\rightarrow \infty\).

Séries Infinitas

Definiremos uma série infinita como a soma dos elementos de uma sequência infinita. Denotaremos a série por
$$
S=\sum_{n=0}^{\infty }a_{n}=a_0+a_{1}+a_{2}+a_{3}+\cdots.
$$
A soma de infinitos termos não tem um significado óbvio e imediato. Para atribuir a ela um sentido inequívoco definiremos antes a soma dos \(N\) primeiros termos da série, denominada a soma reduzida,
$$
S_{N}=\sum_{n=1}^{N}a_{n}.
$$
Observe agora que o conjunto destas somas reduzidas forma uma sequência \(\left\{S_{n}\right\} =S_{1},S_{2},S_{3},\cdots\), que pode convergir ou não. Dizemos que a série infinita converge para um número \(L\) se a sequência \(\left\{S_{n}\right\}\) converge para \(L\), ou seja,
$$
S_{n}\rightarrow L\Longleftrightarrow \sum_{n=1}^{\infty }a_{n}=L.
$$
Caso contrário a série diverge e denotamos
$$
\sum_{n=1}^{\infty }a_{n}=\infty \;\;\;\text{ ou }\;\;\sum_{n=1}^{\infty}a_{n}=-\infty,
$$
conforme o caso.

Exemplo 5: Um exemplo interesssante de uma série convergente é o seguinte:
$$
\sum_{n=0}^{\infty }\frac{1}{n!}=1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots =\text{e},
$$
onde, por convenção, fazemos \(0!=1\). Este é um caso particular da série mais geral
$$
\sum_{n=0}^{\infty }\frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots =\text{ e}^{x}.
$$
No último exemplo a função exponencial foi escrita como uma soma infinita de termos em potências de \(x\). As séries de potências são importantes no estudo das funções e suas aplicações.

Dizemos que uma série \(\sum_{n=0}^{\infty }a_{n}\) converge absolutamente se a série \(\sum_{n=0}^{\infty }\left\vert a_{n}\right\vert\) converge. Observe que toda a série absoluta convergente é convergente, isto é,
$$
\sum_{n=0}^{\infty }\left\vert a_{n}\right\vert \; \text{ converge } \Rightarrow \sum_{n=0}^{\infty }a_{n} \text{ converge.}
$$

Testes de convergência

Os seguintes testes são os mais utilizados para a verificação de convergencia de uma série.

Teste da Comparação: Se duas séries \(\Sigma a_n\) e \(\Sigma b_n\) são séries de termos não negativos (i.e. \(a_n\geq 0\) e \(b_n\geq 0\) para todo \(n)\) e \(a_n\leq\) \(b_n\) para todo \(n\), então
$$
\begin{array}{lll}
(i) & \;\;\text{ se }\;\;\;\Sigma b_n\text{ converge}\Rightarrow & \Sigma a_n\text{
converge} \\
(ii) & \;\;\text{ se }\;\;\;\Sigma a_n\;\;\text{diverge}\Rightarrow & \Sigma b_n\;\;\text{diverge.}
\end{array}
$$

Teste da Razão: \(\;\) Se \(\Sigma a_n\) é uma séries de termos positivos, definimos o limite
$$
R=\lim_{n\rightarrow \infty }\frac{a_{n+1}}{a_n}.
$$
Então, se
$$
\begin{array}{ll}
R \lt 1\Rightarrow & \Sigma a_n\text{ converge} \\
R \gt 1\Rightarrow & \Sigma a_n\;\;\text{diverge} \\
R=1, & \text{o teste é inconclusivo.}
\end{array}
$$

Teste da Integral: Se \(f(x)\) é uma função positiva não crescente para \(x\gt 0\), então a série \(\Sigma f(n)\) converge se, e somente se, a integral imprópria \(\int_1^\infty f(x)dx\) converge. Além disto vale a desigualdade
$$
\sum_{n=2}^Nf(n)\leq \int_1^Nf(x)dx\leq \sum_{n=1}^{N-1}f(n).
$$

Exemplo 6: Usamos o teste da razão para testar a convergência da série
$$
\sum_{n=1}^{\infty }\frac{n^{2}}{n!}.
$$
Temos, neste caso,
$$
a_{n}=\frac{n^{2}}{n!},\;\;a_{n+1}=\frac{( n+1)^{2}}{(n+1)!}
$$
Calculamos o limite
$$
R=\lim_{n\rightarrow \infty }\frac{( n+1)^{2}}{(n+1)!}\frac{n!}{n^{2}}=\lim_{n\rightarrow \infty }\frac{1}{n+1}( \frac{n+1}{n})
^{2}=\lim_{n\rightarrow \infty }\frac{n+1}{n^{2}}=0.
$$
Como \(R \lt 1\) concluimos que a série converge.

Séries de Maclaurin e de Taylor

Uma função que pode ser expressa em termos de uma série infinita de potências em torno do ponto \(x=x_0\),

(1)

$$
f(x)=a_0+a_{1}( x-x_0) +a_{2}( x-x_0)
^{2}+\cdots =\sum_{n=0}^{\infty }a_{n}( x-x_0)^{n}
$$
é dita uma função analítica (neste ponto). Os coeficientes \(a_{n}\) podem ser obtidos do seguinte modo. Calcule o valor de \(f\) e suas derivadas no ponto \(x_0\)
$$
f(x_0)=a_0,
$$
$$
f'(x)=a_{1}+2a_{2}( x-x_0) +3( x-x_0)^{2}+\cdots =\sum_{n=1}^{\infty }na_{n}( x-x_0)^{n-1},
$$
$$
f'(x_0)=a_{1},
$$
$$
f^{\prime \prime }(x)=2a_{2}+2.3a_{3}( x-x_0) +\cdots=\sum_{n=2}^{\infty }n( n-1) a_{n}( x-x_0)^{n-2},
$$
$$
f^{\prime \prime }(x_0)=2a_{2}\Rightarrow a_{2}=\frac{1}{2}f^{\prime\prime }(x_0),
$$
$$
f^{(3)}(x)=2.3a_{3}( x-x_0) +\cdots =\sum_{n=3}^{\infty}n( n-1) ( n-2) a_{n}( x-x_0)^{n-3},
$$
$$
f^{(3)}(x)=2.3a_{3}\Rightarrow a_{3}=\frac{1}{6}f^{(3)}(x_0).
$$
Continuando este procedimento podemos calcular qualquer um dos coeficientes da série (1), obtendo
$$
a_{n}=\frac{1}{n!}f^{(n)}(x_0).
$$
Com estes coeficientes a série é a chamada série de Taylor,

(2)

$$
f(x)=\sum_{n=0}^{\infty }\frac{1}{n!}f^{(n)}(x_0)( x-x_0)^{n},
$$
onde \(f^{(n)}(x_0)\) indica a derivada n-ésima calculada no ponto \(x=x_0\). Uma série de Maclaurin é uma série de Taylor que descreve o comportamento de uma função em torno do ponto \(x_0=0\).

Resumindo: Sobre a série de potências \(S=\sum_{n=0}^{\infty} a_{n}( x-x_0)^{n}\) podemos coletar as seguintes propriedades:

(i) \(S\) converge (escolhido um valor para \(x\)) se existe o limite
$$
\lim_{N\rightarrow \infty }\sum_{n=0}^Na_n( x-x_0)^n.
$$

(ii) Se a série converge absolutamente, ou seja, existe o limite
$$
\lim_{N\rightarrow \infty }\sum_{n=0}^N\left| a_n( x-x_0)^n\right|,
$$
então ela converge.

(iii) Teste da razão: Definindo
$$
R=\lim_{n\rightarrow \infty }\left| \frac{a_{n+1}( x-x_0)^{n+1}}{a_n( x-x_0)^n}\right| =\left| x-x_0\right| \lim_{n\rightarrow
\infty }\left| \frac{a_{n+1}}{a_n}\right|
$$
então a série é absolutamente convergente no ponto \(x\) se \(R \lt 1\) e é divergente se \(R\gt 1\). O teste é inconclusivo se \(R=1\).

(iv) Se a série \(S\) converge em \(x=a\) então ela converge absolutamente para \(x\) no intervalo \(\left[ x-a,\;x+a\right]\). Se a série \(S\) diverge em \(x=a\) então ela diverge para \(x\) fora deste intervalo.

(v) O intervalo máximo de valores de \(x\) para os quais a série converge absolutamente é chamado o intervalo de convergência. O raio de convergência é \(\rho\) é definido de forma que \(\left[x_0-\rho ,x_0+\rho \right]\) é este intervalo.

Algumas considerações finais sobre o uso do sinal de somatório podem ser úteis. O índice usado pode ser substituído de acordo com as conveniências
$$
\sum_{i=1}^{N}a_{i}=\sum_{j=1}^{N}a_{j},
$$
e as parcelas da soma podem ser agrupadas ou isoladas, como nos exemplos a seguir:
$$
\sum_{i=1}^{N}a_{i}=\sum_{i=1}^{N-1}a_{i}+a_{N}=a_{1}+\sum_{i=2}^{N}a_{i},
$$
$$
\sum_{i=1}^{N}a_{i}=\sum_{i=1}^{P}a_{i}+\sum_{i=P+1}^{N}a_{i},\;\;1 \lt P \lt N.
$$
Pode ser mostrado por indução que
$$
\sum_{i=1}^{N}( a_{i}+b_{i})
=\sum_{i=1}^{N}a_{i}+\sum_{i=1}^{N}b_{i},
$$
$$
\sum_{i=1}^{N}ka_{i}=k\sum_{i=1}^{N}a_{i},\;\;\forall k\in \mathbb{R}.
$$
Se \(a_{i}=a\), uma constante, então
$$
\sum_{i=1}^{N}a_{i}=\sum_{i=1}^{N}a=Na.
$$

Uma série de potências, se convergente, pode ser derivada termo a termo e a derivada obtida desta forma será uma representação fiel da derivada da função que ela representa:
$$
y(x) =\sum_{n=0}^{\infty}a_{n}x^{n}=a_0+a_{1}x+a_{2}x^{2}+\cdots +a_{r}x^{r}+\cdots,
$$
$$
y^{\prime }( x) =\sum_{n=1}^{\infty}na_{n}x^{n-1}=a_{1}+2a_{2}x+\cdots +ra_{r}x^{r-1}+\cdots ,
$$
$$
y^{\prime \prime }(x) =\sum_{n=2}^{\infty }n( n-1)a_{n}x^{n-2}=2a_{2}x+\cdots +r(r-1) a_{r}x^{r-2}+\cdots.
$$

Séries de funções complexas

Uma série infinita de funções complexas é uma série
$$
s(z) =\sum_{n=0}^{\infty }f_{n}(z) =f_0(z) +f_{1}(z) +f_{2}(z) +\ldots
$$
onde as \(f_{i}(z)\) são funções complexas, de variáveis complexas e com um domínio comum. Definimos a soma parcial ou reduzida como
$$
s(z) =\sum_{n=0}^{N}f_{n}(z) =f_0(z)+f_{1}(z) +\ldots +f_{N}(z)
$$
e dizemos que a série converge se a sequência das somas parciais, \(\left\{s_0,\;s_{1},\;s_{2},\ldots \right\}\), converge, ou seja, quando existe o limite \(\lim_{n\rightarrow \infty }s_{n}(z)\). Neste caso
$$
s(z) =\sum_{n=0}^{\infty }f_{n}(z)=\lim_{n\rightarrow \infty }s_{n}(z).
$$
A expressão
$$
r_{n}(z) =s(z) -s_{n}(z)=\sum_{k=n+1}^{\infty }f_{k}(z)
$$
é denonimada o resto da série à partir de \(n+1\) e mede o quanto a soma parcial até o enésimo termo se aproxima da soma total.

Convergência simples ou pontual

Considere uma série
$$
s(z) =\sum_{n=0}^{\infty }f_{n}(z) ,
$$
convergente para todo \(z\) dentro de alguma região \(R\) do plano complexo. Então, dado \(\varepsilon \gt 0\) qualquer, para cada \(z\in R\), existe \(N\) tal que
$$
n\geq N\Rightarrow \left\vert s(z) -s_{n}(z)\right\vert \lt \varepsilon ,
$$
onde \(s_{n}(z)\) é a reduzida da série \(s(z)\). Observamos que \(N\) depende de \(\varepsilon\) também do ponto \(z\) onde a convergência é considerada.

Exemplo 7: Uma série geométrica é a soma dos termos de uma progressão geométrica,
$$
s(z) =\sum_{k=0}^{\infty }z^{k}=1+z+z^{2}+\ldots.
$$
Podemos verificar diretamente a convergência desta série e ainda encontrar a região de \(\mathbb{C}\) onde ela converge. Para fazer isto definimos a soma parcial, até o N-ésimo termo,
$$
s_{N}(z) =\sum_{k=0}^{N}z^{k}=1+z+z^{2}+\ldots +z^{N}.
$$
Multiplicando esta expressão por \(z\) temos
$$
zs_{N}(z) =\sum_{k=0}^{N}z^{k+1}=z+z^{2}+z^{3}+\ldots +z^{n+1}.
$$
Subtraindo as linhas acima
$$
s_{N}-zs_{N}=1-z^{N+1},
$$
ou seja, a soma parcial é dada por
$$
s_{N}(z) =\frac{1-z^{N+1}}{1-z}.
$$
Notamos agora que esta soma só converge se \(\left\vert z\right\vert \lt 1\). Neste caso o numerador da expressão acima tende para 1 e, portanto,
$$
s(z) =\sum_{n=0}^{\infty }z^{n}=\frac{1}{1-z}\text{ se }\left\vert z\right\vert \lt 1.
$$
Fora deste círculo ou na fronteira \(\left\vert z\right\vert =1\) a série diverge.

Observaremos, no entanto, que a convergência não é igual para todos os pontos dentro do círculo \(\left\vert z\right\vert \lt 1\). Escolhido um ponto \(z\) temos o resto
$$
r_{n}(z) =s(z) -s_{n}(z) =\frac{1}{1-z}-\frac{1-z^{n+1}}{1-z}=\frac{z^{n+1}}{1-z}.
$$
Em valor absoluto, devemos ter
$$
\left\vert s(z) -s_{n}(z) \right\vert =\frac{\left\vert z\right\vert^{n+1}}{\left\vert 1-z\right\vert } \lt \varepsilon
$$
para \(n \gt N\). Devemos indicar para que valor de \(N\) ocorre um erro menor que \(\varepsilon\). Queremos obter \(n\) em
$$
\left\vert z\right\vert^{n+1} \lt \varepsilon \left\vert 1-z\right\vert.
$$
Tome o logaritmo de base \(\left\vert z\right\vert\) dos dois lados da equação para obter
$$
n+1\gt \log _{\left\vert z\right\vert }( \varepsilon \left\vert
1-z\right\vert ) ,
$$
lembrando que \(\log _{\left\vert z\right\vert }\left\vert z\right\vert^{n+1}=n+1\) e o sinal de desigualdade fica invertido porque o logaritmo de base \(\left\vert z\right\vert \lt 1\) é uma função decrescente. Lembrando ainda que se pode mudar de base do logaritmo de acordo com a expressão
$$
\log _{a}N=\frac{\log _{b}N}{\log _{b}a}
$$
reecrevemos a expressão acima em termos do logaritmo natural
$$
n\gt\frac{\ln ( \varepsilon \left\vert 1-z\right\vert ) }{\ln\left\vert z\right\vert }-1
$$
o que mostra que não se pode determinar um único valor de \(N\) para todo o valor de \(\left\vert z\right\vert\), uma vez que a fração cresce arbitrariamente para \(\left\vert z\right\vert \rightarrow 1\). Em outras palavras a convergência é simples ou pontual. Não é possível determinar \(N\) para qualquer valor de \(z\) dentro do círculo de convergência.

Convergência uniforme

Definição: (i) Uma sequência de funções \(f_{i}(z)\) definidas em um domínio comum \(D\), converge uniformemente para \(f(z)\) se, dado \(\varepsilon \gt 0\) existe um inteiro \(N\) tal que
$$
\forall z\in D,\ n\gt N\Rightarrow \left\vert f(z) -f_{n}(z) \right\vert \lt \varepsilon.
$$
(ii) A série \(s(z) =\sum_{n=0}^{\infty }f_{n}(z)\) converge uniformemente em \(D\) se, dado \(\varepsilon \gt 0\) existe \(N\) inteiro
tal que
$$
\forall z\in D,\ n\gt N\Rightarrow \left\vert s(z) -s_{n}(
z) \right\vert \lt \varepsilon.
$$

A diferença entre convergência pontual e uniforme é que, no segundo caso, a sequência ou a série fica arbitrariamentre próxima de seu valor limite para todos os valores de \(z\) dentro do domínio da função, a partir de algum \(n\) suficientemente grande.

Exemplo 8: Vimos que a série geométrica \(\sum_{n=0}^{\infty }z^{n}\) não converge uniformemente dentro do disco \(\left\vert z\right\vert \lt 1\). O motivo é que ela exige que se considere um número maior de termos a medida que se aproxima da borda do disco. Tal dificuldade desaparece se fixarmos o domínio \(\left\vert z\right\vert \leq \delta \lt 1\). Neste caso temos

(4)

$$
R_{n}=\frac{\left\vert z\right\vert^{n+1}}{\left\vert 1-z\right\vert }\leq
\frac{\delta^{n+1}}{1-\left\vert z\right\vert }\leq \frac{\delta^{n+1}}{1-\delta },
$$
que é menor que \(\varepsilon\) se tomarmos
$$
n \lt \frac{\ln ( \varepsilon \left\vert 1-\delta \right\vert ) }{\ln \delta }-1.
$$
Observe que, na obtenção da desigualdade (4), usamos
$$
\left\vert z_{1}+z_{2}\right\vert \geq \left\vert z_{1}\right\vert
-\left\vert z_{2}\right\vert \Rightarrow \left\vert 1-z\right\vert \geq
1-\left\vert z\right\vert.
$$

O seguinte teorema será útil na obtenção do teste M de Weierstrass que é, por sua vez, uma forma prática para se mostrar a convergência uniforme de uma sequência.

Teorema: Uma condição necessária e suficiente para a a série \(s(z) =\sum_{n=0}^{\infty }f_{n}(z)\) seja uniformemente convergente na região \(D\) é: dado \(\varepsilon \gt 0\) existe um \(N\) inteiro tal que, para todo \(p\) inteiro positivo temos

(5)

$$
\forall z\in D,\ n\gt N\Rightarrow \left\vert s_{n+p}(z)-s_{n}(z) \right\vert \lt \varepsilon.
$$

Observamos, antes de prosseguir com a demonstração, que
$$
s_{n+p}(z) -s_{n}(z) =\sum_{k=0}^{n+p}f_{k}(
z) -\sum_{k=0}^{n}f_{k}(z) =\sum_{k=n+1}^{n+p}f_{k}(
z) =f_{n+1}(z) +\ldots +f_{n+p}(z)
$$
e, portanto, a condição (5) equivale à
$$
\forall z\in D,\ n\gt N\Rightarrow \left\vert f_{n+1}(z) +\ldots
+f_{n+p}(z) \right\vert \lt \varepsilon.
$$

Demonstração: A condição é necessária pois, supondo que a série seja uniformemente convergente em \(D\) temos que, dado \(\varepsilon \gt 0\) existe um \(N\) tal que
$$
n\gt N\Rightarrow \left\vert s_{n}(z) -s(z) \right\vert \lt \varepsilon /2.
$$
Para um índice ainda maior vale certamente \(\left\vert s_{n+p}(z) -s(z) \right\vert \lt \varepsilon /2\), já que a série é convergente. Usando a desigualdade triangular temos
$$
\left\vert s_{n+p}-s_{n}\right\vert =\left\vert s_{n+p}-s+s-s_{n}\right\vert
\lt \left\vert s_{n+p}-s\right\vert +\left\vert s-s_{n}\right\vert \lt \varepsilon
/2+\varepsilon /2=\varepsilon.
$$
Além disto a condição é suficiente pois, supondo \(\left\vert s_{n+p}-s_{n}\right\vert \lt \varepsilon\) observamos que
$$
\lim_{p\rightarrow \infty }s_{n+p}(z) =s(z)
$$
e, portanto,
$$
\lim_{p\rightarrow \infty }\left\vert s_{n+p}-s_{n}\right\vert =\left\vert s-s_{n}\right\vert \lt \varepsilon.
$$
Tomando o limite com \(n\rightarrow \infty\) da mesma expressão temos
$$
\lim_{n\rightarrow \infty }\left\vert s-s_{n}\right\vert \lt \varepsilon ,
$$
que é a condição para que a série seja convergente.

Temos, como consequência do teorema acima temos o teste de Weierstrass:
Teorema: Se \(\sum M_{n}\) é uma série numérica convergente e \(f_{n}(z)\) uma sequência de funções definidas em \(D\), satisfazendo
$$
\left\vert f_{n}(z) \right\vert \leq M_{n},\forall n,\ \forall z\in D
$$
então \(\sum f_{n}(z)\) converge uniformemente em \(D\).

Demonstração: Usando a desigualdade triangular temos que
$$
\left\vert f_{n+1}+\ldots +f_{n+p}\right\vert \leq \left\vert
f_{n+1}\right\vert +\ldots +\left\vert f_{n+p}\right\vert \leq
M_{n+1}+\ldots +M_{n+p}\lt \varepsilon,
$$
onde a última desigualdade decorre de ser \(\sum M_{n}\) uma série convergente. Pelo teorema anterior \(\sum f_{n}(z)\) converge uniformemente em \(D\).

Exemplo 9: A série \(s=\sum_{n=0}^{\infty }z^{n}\) converge uniformemente no disco \(\left\vert z\right\vert \leq \delta \lt 1\) pois \(\left\vert z\right\vert \leq \delta^{n}=M_{n}\) e \(\sum_{n=0}^{\infty }\delta^{n}=1+\delta +\delta^{2}+\ldots =1/( 1-\delta )\) no disco.

Teorema: Seja \(f(z) =\sum_{n=0}^{\infty}f_{n}(z)\) uma série de funções uniformemente convergente em \(D\). Então

(i) Se as funções \(f_{i}(z)\) são contínuas \(f(z)\) é contínua em \(D\).

(ii) Se \(C\) é um contorno inteiramente contido em \(D\) então
$$
\int_{C}f(z) dz=\sum_{n=0}^{\infty }\int_{C}f_{n}(
z) dz.
$$

(iii) Se \(D\) é simplesmente conexa então \(f(z)\) é analítica em \(D\) e sua derivada é
$$
f'(z) =\sum_{n=0}^{\infty }f_{n}^{\prime }(
z).
$$
Sua derivada de ordem \(k\)-ésima é dada por
$$
\frac{d^{k}}{dz^{k}}f(z) =\sum_{n=0}^{\infty }\frac{d^{k}}{dz^{k}}f_{m}(z).
$$

Demonstração: (i) Tome \(\varepsilon \gt 0\) arbitrário e \(z\in D\) qualquer. Denotando a soma parcial e o resto respectivamente por
$$
s_{n}(z) =\sum_{k=0}^{n}f_{k}(z) ,\text{ }r_{n}(z) =\sum_{k=n+1}^{n}f_{k}(z)
$$
temos que \(f(z) =s_{n}(z) +r_{n}(z)\). Para mostrar que a soma infinita das funções é contínua
fazemos

(5)

$$
\begin{array}{ll}
\left\vert f(z) -f(z_0) \right\vert & \leq
\left\vert s_{n}(z) -s_{n}( z_0) \right\vert
+\left\vert r_{n}(z) -r_{n}( z_0) \right\vert
\; \\
& \leq \left\vert s_{n}(z) -s_{n}( z_0) \right\vert
+\left\vert r_{n}(z) \right\vert +\left\vert r_{n}(
z_0) \right\vert.
\end{array}
$$
Como a série converge uniformemente existe \(N\) tal que
$$
z\in D,\ n\gt N\Rightarrow \left\vert r_{n}(z) \right\vert \lt \varepsilon.
$$
Fixado um \(n=N,\;\;s_{N}(z)\) é contínua por ser a soma finita de funções contínuas e, portanto, dado \(\varepsilon \gt 0\) podemos determinar \(\delta\) tal que
$$
\left\vert z-z_0\right\vert \lt \delta \Rightarrow \left\vert s_{N}(z) -s_{N}( z_0) \right\vert \lt \varepsilon.
$$
Dai, e de (5), se pode concluir que
$$
\left\vert f(z) -f(z_0) \right\vert \leq \varepsilon +\varepsilon +\varepsilon =3\varepsilon ,
$$
o que significa que \(f(z)\) é contínua.

(ii) Observamos primeiro que, sendo \(f(z) =s_{n}(z) +r_{n}(z)\) temos
$$
\int_{C}f(z) dz=\int_{C}s_{n}(z) dz+\int_{C}r_{n}(z) dz=
$$
$$
\int_{C}\left[ \sum_{k=0}^{n}f_{k}(z) \right]
dz+\int_{C}r_{n}(z) dz=\sum_{k=0}^{n}\int_{C}f_{k}(
z) dz+\int_{C}r_{n}(z) dz,
$$
onde se usou o fato de que a integral da soma finita de funções é a soma das integrais. Observamos agora que a última integral tende a zero para \(n\rightarrow \infty\), o que é mais fácil ser mostrado em valor absoluto:
$$
\left\vert \int_{C}r_{n}(z) dz\right\vert \leq \int_{C}\left\vert r_{n}(z) \right\vert \left\vert dz\right\vert \leq \varepsilon L,
$$
onde fizemos \(\left\vert r_{n}(z) \right\vert \leq \varepsilon\) e \(\int_{C}\left\vert dz\right\vert =L\), é o comprimento de arco do
contorno \(C\). Tomando \(n\rightarrow \infty\) e lembrando que \(\left\vert r_{n}(z) \right\vert \underset{n\rightarrow \infty }{\rightarrow}0\) temos o resultado desejado:
$$
\int_{C}f(z) dz=\sum_{n=0}^{\infty }\int_{C}f_{n}(z) dz.
$$
(iii) Como cada uma das funções \(f_{k}\) é analítica então
$$
\oint f_{k}(z) dz=0,\ k=0,~1,~2,\;\ldots.
$$
Como consequência \(\oint_{C}f(z) dz=\sum_{k=0}^{\infty }\oint_{C}f_{k}(z) dz=0\) para uma contorno fechado \(C\) arbitrário em \(D\). Pelo teorema de Morera concluímos que \(f\) é analítica. Resta mostrar que \(f’=\sum f_{k}^{\prime }\). Escolhido um \(z\in R\) e \(C\) um contorno envolvendo \(z\) uma vez no sentido positivo (podemos tomar, por exemplo \(C:\left\vert w-z\right\vert =\delta )\) temos que a série
$$
\frac{k!}{2\pi i}\frac{f(w) }{( w-z)^{k+1}}=\frac{k!}{2\pi i}\sum_{n=0}^{\infty }\frac{f_{n}( w) }{( w-z)
^{k+1}}
$$
converge uniformemente para \(w\) sobre o contorno \(C\). Logo ela pode ser integrada termo a termo. Usando a fórmula da derivada \(k-\)ésima temos
$$
f^{( k) }(z) =\frac{k!}{2\pi i}\oint\nolimits_{C}\frac{f(w) }{( w-z)^{k+1}}dw=
$$
$$
f^{( k) }(z) =\frac{k!}{2\pi i}\oint\nolimits_{C}\frac{\sum_{n=0}^{\infty }f_{n}( w) }{( w-z)^{k+1}}dw=
$$
$$
=\frac{k!}{2\pi i}\sum_{n=0}^{\infty }\oint\nolimits_{C}\frac{f_{n}( w) }{( w-z)^{k+1}}dw=\sum_{n=0}^{\infty } f_{n}^{(k) }(z),
$$
como queríamos mostrar.

Séries de potências

Um tipo particular de série de funções é obtido quando as funções envolvidas são simplesmente potências, \(f_{n}(z) =a_{n}(z-z_0)^{n}\). Neste caso temos as séries de potências,

(6)

$$
f(z) =\sum\limits_{n=0}^{\infty }a_{n}(z-z_0)
^{n},\ \ a_{n},\ z_0\in \mathbb{C}.
$$
Esta é a chamada série de Taylor para função \(f(z)\) e seus coeficientes \(a_{n}\) podem ser obtidos, como veremos, de modo análogo ao usado nas séries de funções reais. Em alguns casos, no entanto, podemos obter a séries por comparação com séries previamente conhecidas, como ilustraremos nos exemplos a seguir.

Exemplo 10: Conhecemos a expansão em séries
$$
\frac{1}{1-z}=\sum\limits_{n=0}^{\infty }z^{n},\ \ \left\vert z\right\vert \lt 1.
$$
Fazendo \(u=-z\) na expressão acima temos
$$
\frac{1}{1+u}=\sum\limits_{n=0}^{\infty }( -u)
^{n}=\sum\limits_{n=0}^{\infty }( -1)^{n}u^{n},\ \ \left\vert
u\right\vert \lt 1.
$$
As duas séries convergem dentro do mesmo disco de raio unitário.

Exemplo 11: Podemos obter por comparação a expansão em séries de \(f(z) =1/z\) em torno de \(z_0=2\), ou seja, em potências de \(z-2\) da seguinte forma:
$$
\frac{1}{z}=\frac{1}{z-2+2}=\frac{1/2}{1+( z-2) /2}.
$$
Denotando \(u=( z-2) /2\) temos
$$
\frac{1}{z}=\frac{1}{2}\frac{1}{1+u}=\frac{1}{2}\sum\limits_{n=0}^{\infty
}( -1)^{n}u^{n}=\frac{1}{2}\sum\limits_{n=0}^{\infty }(
-1)^{n}( \frac{z-2}{2})^{n}=\sum\limits_{n=0}^{\infty }\frac{( -1)^{n}}{2^{n+1}}( z-2)^{n},
$$
válida na região
$$
\left\vert \frac{z-2}{2}\right\vert \lt 1\Rightarrow \left\vert z-2\right\vert \lt 2,
$$
ou seja, o disco de raio \(2\) com centro em \(z=2\). Observe que não é possível obter a série de potências, dada pela equação (6), da função \(f(z) =1/z\) em torno de \(z_0=0\), uma vez que, neste ponto, a função não é analítica e nem sequer está definida.

Exemplo 12: A expansão em séries de \(f(z) =1/z\) em potências de \(z+3\) pode ser obtida da seguinte forma:
$$
\frac{1}{z}=\frac{1}{z+3-3}=\frac{-1/3}{1-( z+3) /3}.
$$
Denotando \(u=( z+3) /3\) temos
$$
\frac{1}{z}=-\frac{1}{3}\frac{1}{1-u}=-\frac{1}{3}\sum\limits_{n=0}^{\infty}u^{n}=-\frac{1}{3}\sum\limits_{n=0}^{\infty }( \frac{z+3}{3})
^{n}=-\sum\limits_{n=0}^{\infty }\frac{1}{3^{n+1}}( z+3)^{n},
$$
válida na região
$$
\left\vert \frac{z+3}{3}\right\vert \lt 1\Rightarrow \left\vert z+3\right\vert \lt 3.
$$

Exemplo 13: A função \(f(z)=1/( 6z-3)\) tem a seguinte expansão em torno de \(z_0=2\) :
$$
\frac{1}{6z-3}=\frac{1}{6( z-2) +9}=\frac{1/9}{1+2(
z-2) /3}.
$$
Denotando \(u=2( z-2) /3\) temos
$$
f(z) =\frac{1}{9}\frac{1}{1+u}=\frac{1}{9}\sum\limits_{n=0}^{\infty}(-1)^{n}u^{n}=
$$
$$
=\frac{1}{9}\sum\limits_{n=0}^{\infty}(-1)^{n}(\frac{2}{3})^{n}(z-2)^{n}=\sum\limits_{n=0}^{\infty }( -1)^{n}\frac{2^{n}}{3^{n+2}}( z-2)^{n}.
$$

Esta expansão é válida na região \(\left\vert z-2\right\vert \lt 3/2\).

Definição: Os valores de \(z\) para os quais a série converge absolutamente é a região de convergência da série. Se esta região é o disco \(\left\vert
z-z_0\right\vert \lt r\) então dizemos que \(r\) é o raio de convergência da série.

Teorema: O raio de convergência de \(s=\sum\limits_{n=0}^{\infty }a_{n}(z-z_0)^{n}\;\) é dado por
$$
r=\lim_{n\rightarrow \infty }\left\vert \frac{a_{n}}{a_{n+1}}\right\vert ,
$$
quando este limite existir.

Demonstração: Sabemos que a série dada converge se \(\sum\limits_{n=0}^{\infty }\left\vert a_{n}(z-z_0)^{n}\; \right\vert\) converge. Pelo teste da razão esta última série converge se
$$
L=\lim_{n\rightarrow \infty }\left\vert \frac{a_{n+1}(z-z_0)
^{n+1}}{a_{n}(z-z_0)^{n}}\right\vert \lt 1\Rightarrow
\lim_{n\rightarrow \infty }\frac{\left\vert a_{n+1}\right\vert }{\left\vert
a_{n}\right\vert }\frac{\ \left\vert z-z_0\right\vert^{n+1}}{\left\vert
z-z_0\right\vert^{n}}\lt 1,
$$
ou ainda
$$
\lim_{n\rightarrow \infty }\frac{\left\vert a_{n}\right\vert }{\left\vert
a_{n+1}\right\vert }\frac{1}{\left\vert z-z_0\right\vert }\gt 1\Rightarrow
\lim_{n\rightarrow \infty }\frac{\left\vert a_{n}\right\vert }{\left\vert
a_{n+1}\right\vert }\gt \left\vert z-z_0\right\vert.
$$
Estes são os valores de \(z\) para os quais a série dada converge, ou
seja,
$$
\left\vert z-z_0\right\vert \lt r=\lim_{n\rightarrow \infty }\frac{\left\vert
a_{n}\right\vert }{\left\vert a_{n+1}\right\vert }.
$$

Exemplo 14: Vamos encontrar o raio de convergência da série \(\sum\nolimits_{n=1}^{\infty }( \sqrt{n})^{n}z^{n}\). Temos, neste caso, que \(a_{n}=n^{n}/2\) e, portanto,
$$
r=\lim_{n\rightarrow \infty }\frac{n^{n/2}}{( n+1)^{(
n+1) /2}}=\lim_{n\rightarrow \infty }\left[ \frac{n^{n}}{(
n+1)^{n+1}}\right]^{1/2}=
$$
$$
=\lim_{n\rightarrow \infty }\left[ \frac{n^{n}}{( n+1)^{n}(
n+1) }\right]^{1/2}=\lim_{n\rightarrow \infty }\frac{1}{(
n+1)^{1/2}}( \frac{n}{( n+1) })^{n/2}=0.
$$
O raio de convergência nulo indica que esta série diverge para qualquer valor de \(z\neq 0\).

Exercícios:

1. Mostre que
$$
\begin{array}{ll}
\text{a.}\; \frac{1}{( 1-z)^{2}}=\sum\limits_{n=0}^{\infty}( n+1) z^{n}\; & \text{b.}\; \ln (1-z)=-\sum\limits_{n=1}^{\infty }\frac{z^{n}}{n} \\
\text{c.}\; \frac{1}{1+z}=\sum\limits_{n=0}^{\infty}(-1)^{n}z^{n} & \text{d.}\; \frac{1}{1-z^{2}}=\sum\limits_{n=0}^{\infty}z^{2n}\; \\
\text{e.}\; \ln ( 1+z) =\sum\limits_{n=1}^{\infty }\frac{( -1)^{n+1}}{n}z^{n}.\; &
\end{array}
$$

2. Use o teste de Weierstrass para testar a convergência dasseguintes séries:
$$
\begin{array}{ll}
\text{a. }\ \sum\limits_{n=1}^{\infty }\frac{n\cos 3n}{1+5n}z^{n},\; \text{ no disco }\left\vert z\right\vert \leq r\lt 1,\;
& \text{b. }\; \sum\limits_{n=1}^{\infty }\frac{n^{2}-2\cos n}{10n^{2}+7}z^{2n-1},\; \text{ no disco }\left\vert z\right\vert \leq r\lt 1,\\
\text{c. }\; \sum\limits_{n=1}^{\infty }\frac{n+7\sqrt{n+1}}{(n+1) 2^{n}}z^{2n-1},\; \text{ no disco }\left\vert z\right\vert \leq r\lt \sqrt{2},
& \text{d. }\; \sum\limits_{n=1}^{\infty }\frac{( -1)^{n}n( z-1)^{n}}{n+1}\; ,\ \text{no disco }\left\vert z-1\right\vert \leq r\lt 1, \\
\text{e. }\; \sum\limits_{n=1}^{\infty }\frac{n^{k}}{R^{n}}z^{n},\; \text{ no disco } \left\vert z\right\vert \leq r\lt R,\; \text{ quaisquer }R\;\text{ e }k.
& \text{f. }\; \sum\limits_{n=1}^{\infty }\frac{a^{n}}{n!}z\;^{n},\; \text{ no disco }\left\vert z\right\vert \lt R,\; \text{ quaisquer }R \;\text{ e }\;\;\ a.
\end{array}
$$

3. Obtenha o desenvolvimento em séries de potências em torno do ponto indicado. Represente graficamente a região de convergência.
$$
\begin{array}{l}
\text{a. }\; f(z) =\frac{1}{z} \; \text{ em potências de }\;z+i,\; \\
\text{b. }\; f(z) =\frac{1}{2z-9} \; \text{ em torno de }\;z_0=3,\; \; \\
\text{c. }\; f(z) =\frac{1}{z^{2}} \; \text{ em potências de }\;z-1,\; \; \\
\text{d. }\; f(z) =\frac{1}{2z-3} \; \text{ em torno de }\;z_0=-i.\; \;
\end{array}
$$

4.) Encontre o raio de convergência das séries:
$$
\begin{array}{ll}
\text{a. }\ \sum\limits_{n=0}^{\infty }nz^{n}\; & \text{b. }\
\sum\limits_{n=0}^{\infty }n!z^{n}\; \\
\text{c. }\ \sum\limits_{n=0}^{\infty }\frac{( z-i)^{n}}{n} &
\text{d. }\ \sum\limits_{n=0}^{\infty }\ln ( 3n^{2}+5) (
z\; +i)^{n} \\
\text{e. }\ \sum\limits_{n=0}^{\infty }( \text{ senh }n) z^{n}\; & \text{f. }\ \sum\limits_{n=1}^{\infty }\frac{4^{n}}{n}z^{2n}
\end{array}
$$

Algumas respostas e sugestões:

1.(a, b) Derive e integre termo a termo a série geométrica

1.(c) Faça \(u=-z\). (d) Faça \(u=z^{2}\). (e) Faça \(u=-z\) na série obtida em (1b).

2. Todas as séries convergem nas regiões indicadas.

3a. \(f(z)=\sum\limits_{n=0}^{\infty}(i)^{1-n}(z+i)^{n},\;\;\left\vert z+i\right\vert \lt 1.\)
3b. \(f(z)=\sum\limits_{n=0}^{\infty}\frac{-2^{n}}{3^{n+1}}( z-3)^{n},\;\; \left\vert z-3\right\vert \lt \frac{3}{2}.\)
3c. \(f(z)=\sum\limits_{n=0}^{\infty}(-1)^{n}(n+1)(z-1)^{n},\;\; \left\vert z-1\right\vert \lt 1.\) (Encontre a expressão para \(1/z\) e derive.)
3d. \(f(z)=\sum\limits_{n=0}^{\infty}\frac{-2^{n}}{( 3+2i)^{n+1}}( z+i)^{n},\;\;\left\vert z+i\right\vert \lt \frac{\sqrt{13}}{2}\).

4a.  \(r=1\),   4b.  \(r=0\),   4c.  \(r=\infty\),   4d.  \(r=1\),   4e.  \(r=1/e\),   4f.  \(r=1/2\).

Séries de Taylor

Teorema: Toda série de potências
$$
f(z) =\sum\limits_{n=0}^{\infty }a_{n}(z-z_0)^{n}
$$
representa uma função analítica em seu disco de convergência \(\left\vert z-z_0\right\vert \lt r\). Esta série pode ser derivada termo a termo um número \(n\) arbitrário de vezes e as derivadas possuem o mesmo raio de convergência da série original. Por exemplo, a derivada primeira é
$$
f'(z) =\sum\limits_{n=1}^{\infty }na_{n}(
z-z_0)^{n-1}=\sum\limits_{n=0}^{\infty }( n+1)
a_{n+1}(z-z_0)^{n},
$$
enquanto a derivada segunda é
$$
f^{\prime \prime }(z) =\sum\limits_{n=2}^{\infty }n(
n-1) a_{n}(z-z_0)^{n-2}=\sum\limits_{n=0}^{\infty
}( n+1) ( n+2) a_{n+2}(z-z_0)^{n}.
$$

Teorema: Seja \(f\) uma função analítica em uma região \(R\). Então \(f\) possui um desenvolvimento único em série de potências dado por

(7)

$$
f(z) =\sum\limits_{n=0}^{\infty }\frac{f^{( n) }( z_0) }{n!}(z-z_0)^{n},
$$
onde \(z_0\in R\) e \(\left\vert z-z_0\right\vert \leq r_0\) é um disco inteiramente contido em \(R\).

Demonstração: Seja \(z\) um ponto no interior do disco \(\left\vert z-z_0\right\vert \leq r_0\), como se mostra na figura 1. Denote \(r=\left\vert z-z_0\right\vert\) e escolha \(r_{1}\) de modo que \(r\lt r_{1}\lt r_0\). Como \(f\) é analítica em \(R\), pela fórmula de Cauchy

(8)

$$
f(z) =\frac{1}{2\pi i}\oint\limits_{C_{1}}\frac{f(w)}{w-z}dw, \;\text{ onde }\; C_{1}:\left\vert w-z_0\right\vert=r_{1}.
$$
Observe ainda que
$$
\frac{1}{w-z}=\frac{1}{( w-z_0) -(z-z_0) }=\frac{1}{w-z_0}\frac{1}{1-(z-z_0)/( w-z_0) }=
$$

Figura 1.

$$
=\frac{1}{w-z_0}\sum\limits_{n=0}^{\infty }(\frac{z-z_0}{w-z_0})^{n},
$$

que é uma série convergente porque
$$
\left\vert \frac{z-z_0}{w-z_0}\right\vert =\frac{\left\vert z-z_0\right\vert }{\left\vert w-z_0\right\vert }=\frac{r}{r_{1}} \lt 1.
$$
Concluimos que
$$
\frac{1}{w-z}=\sum\limits_{n=0}^{\infty }\frac{(z-z_0)^{n}}{( w-z_0)^{n+1}}.
$$
O integrando na equação (8) pode ser escrito como
$$
\frac{f(w) }{w-z}=f(w) \sum\limits_{n=0}^{\infty }\frac{f(w) (z-z_0)^{n}}{( w-z_0)
^{n+1}}.
$$
Como \(f(z)\) é contínua ela deve assumir um valor finito máximo em \(C_{1}\), ou seja, \(\left\vert f(w)
\right\vert \leq M\) e
$$
\sum\limits_{n=0}^{\infty }\left\vert \frac{f(w) (
z-z_0)^{n}}{( w-z_0)^{n+1}}\right\vert \leq \frac{M}{r_{1}}\sum\limits_{n=0}^{\infty }( \frac{r}{r_{1}})^{n}.
$$
Pelo teste de Weierstrass a série converge e, portanto, pode ser integrada termo a termo,
$$
f(z) =\frac{1}{2\pi i}\oint\limits_{C_{1}}f(w)
\sum\limits_{n=0}^{\infty }\frac{(z-z_0)^{n}}{(
w-z_0)^{n+1}}dw=\sum\limits_{n=0}^{\infty }\left[ \frac{1}{2\pi i}\oint\limits_{C_{1}}\frac{f(w) }{( w-z_0)^{n+1}}dw\right] (z-z_0)^{n}.
$$
O termo dentro de colchetes é \(f^{( n) }( z_0)/n!\) de onde concluímos a demonstração de que
$$
f(z) =\sum\limits_{n=0}^{\infty }\frac{f^{( n)
}( z_0) }{n!}(z-z_0)^{n}.
$$
A série obtida, equação (7), é denominada série de Taylor. A expansão em séries de potência para uma função em torno de \(z_0=0\) é denominada série de MacLaurin.

Exemplo 15: A expansão em séries de potência para a função exponencial \(f(z) =\text{ e}^{z}\) em torno de \(z_0=0\) pode ser encontrada da seguinte forma:
$$
f^{( n) }(z) =\text{ e}^{z};\ f^{( n) }(0) =1.
$$
Então
$$
\text{ e}^{z}=1+z+\frac{z^{2}}{2!}+\ldots +\frac{z^{n}}{n!}+\ldots=\sum\limits_{n=0}^{\infty }\frac{z^{n}}{n!}.
$$

Exemplo 16: (Série binomial) Considere a função \(f(z) =( 1+z)^{\alpha }\), no ramo \(f(0)=1\). Em torno de \(z_0=0\) podemos calcular
$$
f'(z) =\alpha ( 1+z)^{\alpha -1},\ \
f'( 0) =\alpha ,
$$
$$
f^{\prime \prime }(z) =\alpha ( \alpha -1) (
1+z)^{\alpha -2},\ \ f^{\prime \prime }( 0) =\alpha
( \alpha -1) ,
$$
$$
f^{( n) }(z) =\alpha ( \alpha -1) \cdots
( \alpha -n+1) ( 1+z)^{\alpha -n},\ \ f^{(
n) }( 0) =\alpha ( \alpha -1) \cdots (
\alpha -n+1).
$$
Portanto
$$
( 1+z)^{\alpha }=1+\alpha z+\frac{\alpha ( \alpha -1) }{!}z^{2}+\cdots =\sum\limits_{n=0}^{\infty }(
\begin{array}{c} \alpha \\
n\end{array}) z^{n}.
$$
onde
$$
(
\begin{array}{c}
\alpha \\
n\end{array}) =\frac{\alpha ( \alpha -1) \cdots ( \alpha
-n+1) }{n!}
$$
é o coeficiente binomial. Se \(\alpha\) é inteiro então a série termina no termo \(n=\alpha\).

Exercícios:

1. Encontre as séries de potências em torno de \(z_0=0\) de:  a. \(\text{sen }z\),   b. \(\cos z\),   c. \(\text{ senh }z\),   d. \(\cosh z\).

2. Desenvolva em torno de \(z_0=1\) a função \(f(z) =z\ln z-z\).   (Use a determinação ou ramo principal, no qual \(\ln 1=0\)).

3. Desenvolva em séries de potências de \(z\) e \(( z-2)\) as funções
$$
f(z) =\frac{1}{( 4-z)^{3}};\ \ g(z) =\frac{1}{z^{5}}.
$$

Algumas respostas e sugestões:

$$
\begin{array}{ll}
\text{1a. } \text{sen }z=\sum\limits_{n=0}^{\infty }\frac{(-1)^{n}}{(2n+1) !}z^{2n+1}\; &
\text{1b. } \cos z=\sum\limits_{n=0}^{\infty }\frac{(-1)^{n}}{(2n)!}z^{2n}\; \\
\text{1c. } \text{ senh }z=\sum\limits_{n=0}^{\infty }\frac{z^{2n+1}}{(2n+1)!} &
\text{1d. }\ \cosh z=\sum\limits_{n=0}^{\infty }\frac{z^{2n}}{(2n)!}
\end{array}
$$

3) Observe que \(f(z) =( 1/4^{3}) /( 1-z/4)^{3}\) e aplique o desenvolvimento binomial. Alternativamente desenvolva \(1/( 4-z)\) em potências de \(z\) e derive duas vezes.

Séries de Laurent

Podemos notar que uma função não analítica em torno de um ponto \(z_0\) pode ter um desenvolvimento em séries em torno deste ponto se admitirmos potências com expoentes negativos. Para ver isto com maior clareza consideremos um exemplo.

Exemplo 17: A função \(f(z) =\text{ e}^{z}/z^{3}\) não é analítica em \(z=0\) e portanto não possui expansão de Taylor em torno deste ponto. No entanto podemos escrever
$$
\frac{\text{ e}^{z}}{z^{3}}=\frac{1}{z^{3}}( 1+z+\frac{z^{2}}{2!}+\ldots +\frac{z^{n}}{n!}+\ldots ) \frac{1}{z^{3}}+\frac{1}{z^{2}}+\frac{1}{2!z}+\frac{1}{3!}+\frac{z}{4!}+\frac{z^{2}}{5!}+\ldots.
$$
Podemos também escrever diretamente
$$
\frac{\text{ e}^{z}}{z^{3}}=\frac{1}{z^{3}}\sum\limits_{n=0}^{\infty }\frac{z^{n}}{n!}=
\sum\limits_{n=0}^{\infty }\frac{z^{n-3}}{n!}=\sum\limits_{n=-3}^{\infty }\frac{z^{n}}{( n+3) !}.
$$
Esta série, incluindo termos em potências negativas de \(z\), generaliza a série de Taylor e é chamada Série de Laurent.

Teorema: Seja \(f\) uma função univalente e analítica na região anular \(G:r\lt \left\vert z-z_0\right\vert \lt R\). Então, \(\forall z\in G\) vale$$
f(z) =\sum\limits_{n=1}^{\infty }\frac{a_{-n}}{(z-z_0)^{n}}+\sum\limits_{n=0}^{\infty }a_{n}(z-z_0)^{n}=\sum\limits_{n=-\infty }^{\infty }a_{n}(z-z_0)^{n},
$$
onde os coeficientes \(a_{n}\) são dados por
$$
a_{n}=\frac{1}{2\pi i}\oint\limits_{C}\frac{f(w) }{(w-z_0)^{n+1}}dw
$$
sendo \(C\) um contorno fechado envolvendo \(z_0\) uma vez, no sentido positivo.

Demonstração: Representamos na figura 2 a região anular \(G\) limitada pelos círculos de raio \(r\) e \(R\), e \(z\in G\). Construímos dois caminhos \(C_{1}\) e \(C_{2}\), de raios \(r_{1}\) e \(r_{2}\) respectivamente, e o caminho \(\gamma =C_{2}\cup -C_{1}\cup L\cup -L\) de forma que \(f\) seja analítica em \(\gamma\) e seu interior. Como \(f\) é analítica em \(G\) podemos usar a fórmula da integral,
$$
f(z) =\frac{1}{2\pi i}\oint\limits_{\gamma }\frac{f(w) }{w-z_0}dw.
$$
Esta integral pode ser escrita como a soma
$$
f(z) =\frac{1}{2\pi i}\oint\limits_{C_2}\frac{f(w) }{w-z_0}dw-\frac{1}{2\pi i}\oint\limits_{C_1}\frac{f(w) }{w-z_0}dw,
$$
lembrando que as integrais sobre \(L\) e \(-L\) se cancelam.

Figura 2.

A primeira integral, sobre o caminho \(C_2\), é a mesma já tratada na demonstração do teorema de Taylor, resultando em
$$
\frac{1}{2\pi i}\oint\limits_{C_2}\frac{f(w)}{w-z_0}dw=\sum\limits_{n=0}^{\infty }a_{n}(z-z_0)^{n},\ \text{onde }\ a_{n}=\frac{f^{( n) }( z_0) }{n!}.
$$
Para resolver a segunda integral, que denotaremos por \(I_{2}\), escrevemos
$$
\frac{1}{w-z}=\frac{1}{( w-z_0) -(z-z_0) }=\frac{-1/(z-z_0) }{1-( w-z_0) /(z-z_0) }
$$
$$
=-\sum\limits_{n=0}^{\infty }\frac{( w-z_0)^{n}}{(z-z_0)^{n+1}},
$$
uma série que converge uniformemente para todo \(w\) em \(C_{1}\) pois
$$
\left\vert \frac{w-z_0}{z-z_0}\right\vert =\frac{\left\vert
w-z_0\right\vert }{\left\vert z-z_0\right\vert }=\frac{r_{1}}{r}\lt 1.
$$
Desta forma podemos escrever
$$
I_{2}=\frac{-1}{2\pi i}\oint\limits_{C_{1}}\frac{f(w) }{w-z}dw=\frac{1}{2\pi i}\oint\limits_{C_{1}}f(w)
\sum\limits_{n=0}^{\infty }\frac{( w-z_0)^{n}}{(
z-z_0)^{n+1}}dw=
$$
$$
=\frac{1}{2\pi i}\sum\limits_{n=0}^{\infty }\frac{1}{(z-z_0)
^{n+1}}\oint\limits_{C_{1}}\frac{f(w) dw}{( w-z_0)
^{-n}}.
$$
Trocando o índice de \(n\) para \(n+1\) temos
$$
I_{2}=\frac{1}{2\pi i}\sum\limits_{n=1}^{\infty }\frac{1}{(
z-z_0)^{n}}\oint\limits_{C_{1}}\frac{f(w) dw}{(
w-z_0)^{-n+1}}=\sum\limits_{n=1}^{\infty }\frac{a_{-n}}{(
z-z_0)^{n}}=\sum\limits_{n=-\infty }^{-1}a_{n}(z-z_0)
^{n}.
$$
Observe que, nos dois casos, as constantes podem ser expressas por
$$
a_{n}=\frac{1}{2\pi i}\oint\limits_{C}\frac{f(w) dw}{(
w-z_0)^{n+1}},
$$
onde \(C\) pode ser qualquer caminho que envolve \(z_0\) uma vez, no sentido positivo.

Algumas vezes, da mesma forma que ocorre com as expansões em séries de Taylor para funções analíticas, é possível encontrar a série de Laurent por simples manipulação da função dada e comparação com a série geométrica. Para mostrar isto vejamos um exemplo.

Exemplo 18: Vamos obter série de Laurent para a função
$$
f(z) =\frac{1}{z^{2}-3z+2},
$$
em torno de \(z_0=1\), na região \(0\lt \left\vert z-1\right\vert \lt 1\). Escrevemos a função como
$$
f(z) =\frac{1}{( z-1) ( z-2) },
$$
e observamos que \(1/( z-2)\) é analítica em \(z_0=1\) e pode ser escrita como
$$
\frac{1}{z-2}=\frac{1}{z-1-1}=\frac{-1}{1-( z-1) }=-\sum\limits_{n=0}^{\infty }( z-1)^{n},
$$
válida para \(\left\vert z-1\right\vert \lt 1\). Como consequência
$$
f(z) =\frac{1}{z-1}\frac{1}{z-2}=\frac{-1}{z-1}\sum\limits_{n=0}^{\infty }( z-1)
^{n}=-\sum\limits_{n=0}^{\infty }( z-1)^{n-1},
$$
que é a série de Laurent para esta função na região indicada. Esta série pode também ser escrita como
$$
f(z) =-\sum\limits_{n=-1}^{\infty }( z-1)^{n}.
$$
Alternativamente, o mesmo exercício pode ser feito do seguinte modo: escrevemos, por meio de frações parciais
$$
f(z) =\frac{1}{( z-1) ( z-2) }=\frac{1}{z-2}-\frac{1}{z-1}.
$$
A série de Taylor para o primeiro termo, analítico, já foi encontrada. Temos portanto a mesma série já encontrada,
$$
f(z) =-\frac{1}{z-1}-\sum\limits_{n=0}^{\infty }(z-1)^{n}.
$$

Exemplo 19: Vamos obter série de Laurent para a mesma função do exemplo anterior, \(f(z)=(z^2-3z+2)^{-1}\) em torno de \(z_0=1\), mas desta vez na região \(\left\vert z-1\right\vert \gt 1\). Agora o ponto \(z_0=2\) está dentro da região de interesse e \(1/(z-2)\) não é analítica. Fazemos
$$
\frac{1}{z-2}=\frac{1}{z-1-1}=\frac{1/( z-1) }{1-1/(z-1) }=\frac{1}{z-1}\frac{1}{1-u}=\frac{1}{z-1}\sum\limits_{n=0}^{\infty }u^{n},
$$
onde
$$
u=\frac{1}{z-1},\;\; \text{válida para }\;\; \left\vert u\right\vert \lt 1\Rightarrow \left\vert z-1\right\vert \gt 1,
$$
que é a região onde se espera que a série seja convergente. Como consequência
$$
\frac{1}{z-2}=\frac{1}{z-1}\sum\limits_{n=0}^{\infty }( \frac{1}{z-1})^{n}=\sum\limits_{n=0}^{\infty }\frac{1}{( z-1)^{n+1}}.
$$
A série que buscamos é
$$
f(z) =\frac{1}{z-1}\sum\limits_{n=0}^{\infty }\frac{1}{(
z-1)^{n+1}}=\sum\limits_{n=0}^{\infty }\frac{1}{( z-1)
^{n+2}}=\sum\limits_{n=-\infty }^{-2}( z-1)^{n}.
$$

As séries de Laurent generalizam as séries de Taylor para o tratamento de funções que possuem algum ponto de não analiticidade dentro da região considerada. Observe que, se \(f\) é analítica em toda parte, inclusive para \(\left\vert z-z_0\right\vert \leq r\), então os coeficientes \(a_{n}\) com \(n\) negativo são todos
nulos. Por exemplo:
$$
a_{-1}=\frac{1}{2\pi i}\oint\limits_{C}f(w) dw=0,
$$
$$
a_{-2}=\frac{1}{2\pi i}\oint\limits_{C}f(w) (w-z_0) dw=0,
$$
$$
a_{-3}=\frac{1}{2\pi i}\oint\limits_{C}f(w) (w-z_0)^{2}dw,
$$
e assim por diante, já que os integrandos são analíticos.

Zeros de funções analíticas

Definição: Dizemos que uma função \(g(z)\) é analítica (ou regular) em \(z=\infty\) se \(g( 1/w)\) for analítica em \(w=0\). Neste caso vale a expansão
$$
g\left( \frac{1}{w} \right) =b_0+b_{1}w+b_{2}w^{2}+\ldots
$$
na vizinhança de \(w=0\), ou, equivalentemente,
$$
g(z) =b_0+\frac{b_{1}}{z}+\frac{b_{2}}{w^{2}}+\ldots.
$$

Se \(f\) uma função analítica no ponto \(z_0\) ela possui expansão de Taylor dada por
$$
f(z) =\sum\limits_{n=0}^{\infty }a_{n}(z-z_0)^{n},\ \text{na vizinhança }\left\vert z-z_0\right\vert \lt r.
$$
Observe que se \(a_0=0\) temos que \(z_0\) é um zero de \(f\), enquanto se \(a_{n}=0\), para todo \(n\), então a função é identicamente nula \(f\equiv 0\) na vizinhança de \(z_{0.}\) Excluindo-se este último caso, suponha que \(a_{m}\), é o primeiro coeficiente não nulo na expansão de Taylor. Neste caso

(9)

$$
f(z) =\sum\limits_{n=m}^{\infty }a_{n}(z-z_0)^{n}=a_{m}(z-z_0)^{m}+a_{m+1}(z-z_0)^{m+1}+\ldots
$$
e dizemos que \(z_0\) é um zero de ordem \(m\) da função. O teorema seguinte fornece um critério de determinação de zeros de uma função.

Teorema: \(z_0\) é um zero de ordem \(m\) de uma função analítica \(f\) se, e somente se, existe uma função \(g\) satisfazendo
$$
f(z) =(z-z_0)^{m}g(z) \; \text{ onde } \; g( z_0) \neq 0.
$$
Alternativamente, o limite
$$
\lim_{z\rightarrow z_0}\frac{f(z) }{(z-z_0)^{m}}
$$
é finito e não nulo.

Demonstração: Fatorando \((z-z_0)^{m}\) na expressão (9) acima obtemos
$$
f(z) =(z-z_0)^{m}\left[ a_{m}+a_{m+1}(z-z_0) +a_{m+2}(z-z_0)^{2}+\ldots \right]
$$
$$
=(z-z_0)^{m}\sum\limits_{n=0}^{\infty }a_{m+n}(z-z_0)^{n}.
$$
Denotando \(g(z) =\sum\nolimits_{n=0}^{\infty }a_{m+n}(z-z_0)^{n}\) temos que, se \(z_0\) é zero de ordem \(m\) de \(f\) então
$$
f(z) =(z-z_0)^{m}g(z) \; \text{ onde } \; g( z_0) \neq 0.
$$
Observamos que
$$
\lim_{z\rightarrow z_0}\frac{f(z) }{(z-z_0)^{m}}=g( z_0) =a_{m}.
$$

Se \(f\) é regular (analítica) em \(z=\infty\) este ponto é chamado um zero de ordem \(m\) se \(w=0\) é zero de ordem \(m\) de \(f(1/w)\).

Exercícios :

1. Encontre as séries de Laurent nas regiões dadas:

a. \(f(z) =\frac{1+z}{z},\; z_0=0,\;\;0 \lt \left\vert z \right\vert \lt \infty\).

b. \(f(z) =\frac{z}{z^{2}+1},\; z_0=0,\;\;0 \lt \left\vert z \right\vert \lt \infty\).

c. \(f(z) =\frac{1}{(z-i)(z-2)}, \; z_0=2, \; 0 \lt \left\vert z-2 \right\vert \lt \sqrt{5}\).

d. \(f(z) =\frac{z^{5}}{z-1},\; z_0=0,\;\; \left\vert z \right\vert \gt 1\).

e. \(f(z) =z^{5}\text{ e}^{1/z},\; z_0=0,\;\;\left\vert z \right\vert \gt 0\).

f. \(f(z) =\frac{\text{sen }z}{( z-\pi )^{3}},\; z_0=\pi , \;\; z\neq \pi\).

2. Seja \(f\) uma função analítica no ponto \(z_0\). Mostre que \(z_0\) é um zero de ordem \(m\) de \(f\) se, e somente se,
$$
f(z_0)=0,\; f'(z_0) =0,\ldots ,\; f^{(m-1)}(z_0) =0 \; \text{ e }\; f^{(m)}(z_0) \neq 0.
$$

3. Determine a ordem do zero \(z=0\;\;\) nas seguintes funções:
$$
\begin{array}{ll}
\text{a.}\;\; (\cos z-1)^{3}\text{sen }z,\;\;
& \text{b.}\;\; \frac{(1-\cos z) \text{ sen }^{2}z}{1-\text{e}^z},\;\;
& \text{c.}\;\; (\text{ e}^{z}-1-z)^{3}\text{sen }^{2}z,\;\;
\\
\text{d.}\;\; \text{e}^{\text{sen }z}-\text{ e}^{z},\;\;
& \text{e.}\;\; (\text{e}^{z^{2}}-1)(\text{sen }^{2}z-z^{2}),\;\;
& \text{f.}\;\; \text{e}^{\text{sen }z}-\text{e}^{\tan z}.
\end{array}
$$

Algumas respostas e sugestões:

1a. A função já está sob a forma de uma série de Laurent: \(f(z) =1+1/z.\)

b. Escreva sob a forma de frações parciais \(f(z)=\frac{A}{z+i}+\frac{B}{z-i}\) para achar
$$
f(z) =\frac{1}{2}( z-i)^{-1}+\sum\limits_{n=0}^{\infty }\frac{(-1)^{n+1}(z-i)^{n}}{(2i)^{n+1}}.
$$

3 – A Teoria da Integral

Arcos e contornos

Um arco contínuo é o conjunto parametrizado
$$
C=\left\{ z\left( t\right) =x\left( t\right) +iy\left( t\right) ;\;a\leq t\leq b\right\} ,
$$
onde \(z\left( t\right)\) é contínua. Observamos que \(z\left(t\right)\) é contínua se, e somente se, \(x(t)\), e \(y(t)\) são contínuas. O mesmo arco, com orientação oposta é denotado por \(-C\) e pode ser parametrizado por
$$
z_{1}\left( t\right) =z\left( -t\right) ,\;-b\leq t\leq -a.
$$

Figura 1

Um arco simples ou arco de Jordan é um arco sem auto-interseções. Uma curva fechada é aquela que satisfaz \(z\left( t_{1}\right) =z\left( t_{2}\right)\), com \(t_1 \neq t_2\). Na figura 2 as curvas são: (a) simples, (b) não simples, com interseção, (c) fechada simples, também chamada curva de Jordan, (d) fechada, com auto-interseção.

Figura 2

Um arco \(C\), parametrizado por \(z\left( t\right) =x\left( t\right) +iy\left(t\right)\) é dito regular se a derivada \(z^{\prime }\left( t\right)=x^{\prime }\left( t\right) +iy^{\prime }\left( t\right)\) existe, é contínua e \(z^{\prime }\left( t\right) \neq 0\), \(\forall t\) no intervalo de definição da curva. Isto garante que a curva possui tangente em qualquer um de seus pontos. O ângulo formado pela tangente com o eixo \(\mathcal{O}x\) é \(\arg \left( z^{\prime }\right)\).

Um contorno ou caminho é um arco regular por partes, ou seja, um arco composto por sub-arcos regulares, \(C=C_{1}\cup C_{2}\cup \ldots \cup \;C_{n}\).

Exercício Resolvido: Faça um esboço das curvas parametrizadas por
$$
\left.
\begin{array}{lll}
\text{(a)}\;\; z_{1}=1+it, & & \text{(b)}\;\; z_{2}=t+it, \\
\text{(c)}\;\; z_{3}=t^{2}+it, & & \text{(d)}\;\; z_{4}=t+it^{2},
\end{array}
\right\} \;\;\; \text{ todas no intervalo } 0 \leq t\leq 1.
$$

A curva (a) tem parte real constante \(x=1\) e imaginária \(y=t\). Ela é, portanto, o segmento de reta \(\left( 1,t\right)\) no plano complexo, com início em \(\left( 1,0\right)\) e fim em \(\left( 1,1\right)\). A curva (b) corresponde a \(x=t,\;y=t\) ou, em outra representação, o segmento de reta \(y=x\). A curva (c) é o arco de parábola \(x=y^{2}\) enquanto a curva (d) é o arco de parábola \(y=x^{2}\), como representado na figura 3(a).

Figura 3

Exercício Resolvido: Identifique e faça um esboço da curva parametrizada por \(z\left( t\right) =re^{i\theta };\;0\leq\theta \leq 2\pi\).

Esta curva pode ser escrita como \(z\left( \theta \right) =r\left( \cos \theta +i\text{sen }\theta \right)\) e portanto tem partes real e imaginária
$$
x=r\cos \theta ,\ \ y=r\text{sen }\theta .
$$
Observe que \(x^{2}+y^{2}=r^{2}\) para qualquer valor de \(\theta\). Quando o parâmetro varia de \(0\) até \(2\pi\) a curva realiza uma volta completa sobre a circunferência de centro na origem e raio \(r\). Esta é uma curva de Jordan, representada na figura 3(b).

Teorema de Jordan: Toda curva \(C\) fechada simples divide o plano em duas regiões, sendo \(C\) sua fronteira comum. O interior \(R\) é uma região limitada, simplesmente conexa, ou seja, qualquer curva fechada simples em seu interior pode ser deformada continuamente sem sair de \(R\).

Como exemplo, o domínio da função \(f\left( z\right) =\ln z\) é
$$
D\left[ \ln \left( z\right) \right] =\mathbb{C}-\left\{ 0\right\} =\left\{ z\in \mathbb{C};\ z\neq 0\right\}
$$

e é uma região perfurada, conexa mas não simplesmente conexa, a que chamaremos região multiplamente conexa.

 

Exercícios:

Identifique as curvas dadas abaixo:

1. \(z=3t+it^{2}, -\infty \lt t \lt \infty\),

2. \(z=3t^{2}+5it, -\infty \lt t \lt \infty\),

3. \(z=r\left( \cos t+i\text{sen }t\right),\; -\pi /4\lt t \lt \pi ,\; r\gt 0\),

4. \(z=1/t+it, 1\lt t \lt \infty\),

5. \(z=t+2i/t, -\infty \lt t \lt 0\),

6. \(z=t+i\sqrt{1-t^{2}}, -1\lt t \lt 1\),

7. \(\left\vert z-2i\right\vert =2\).

8. Qual é a equação da reta em \(\mathbb{C}\) que liga os pontos \(0\) até \(1+i\,\)?

9. Qual é a equação da reta que liga os pontos \(1+i\) até \(0\)?

10. Qual é a equação da reta que liga os pontos \(z_{1}=1+2i\) a \(z_{2}=2+5i\)?

11. Qual é a equação da circunferência com centro em \(z_0=i\) e raio \(r=1\)?

Integrais de funções complexas

Seja \(F\left( t\right) =U\left( t\right) +iV\left( t\right)\) uma função contínua no intervalo \(\left[ a,b\right]\). Sua integral é definida por
$$
\int_{a}^{b}F\left( t\right) dt=\int_{a}^{b}U\left( t\right)dt+i\int_{a}^{b}V\left( t\right) dt.
$$
Seguem da definição as seguintes propriedades: suas partes real e imaginária são, respectivamente

(1)

$$
\text{Re}\int_{a}^{b}F\left( t\right) dt=\int_{a}^{b}U\left( t\right)dt=\int_{a}^{b}\text{Re}\left[ F\left( t\right) \right] dt,
$$

(2)

$$
\text{Im}\int_{a}^{b}F\left( t\right) dt=\int_{a}^{b}V\left( t\right) dt=\int_{a}^{b}\text{Im}\left[ F\left( t\right) \right] dt.
$$
A integral é linear,
$$
\int_{a}^{b}\left[ F\left( t\right) +G\left( t\right) \right]\,dt=\int_{a}^{b}F\left( t\right) dt+\int_{a}^{b}G\left( t\right) dt,
$$
$$
\int_{a}^{b}\alpha F\left( t\right) \,dt=\alpha \int_{a}^{b}F\left( t\right)
dt.
$$
Além disto, uma propriedade que será bastante útil é a chamada desigualdade triangular,

(3)

$$
\left\vert \int_{a}^{b}F\left( t\right) \,dt\right\vert \leq \int_{a}^{b}\left\vert F\left( t\right) \right\vert \,dt.
$$

Exercício Resolvido: Demonstre a desigualdade triangular, propriedade (3).

Observamos primeiro que \(\int_{a}^{b}F\left( t\right) \,dt\) é um número complexo e o escrevemos em sua forma polar
$$
\int_{a}^{b}F\left( t\right) \,dt=re^{i\theta },\;\;\text{ onde }r=\left\vert \int_{a}^{b}F\left( t\right) \,dt\right\vert .
$$
Multiplicamos os dois lados da última equação por \(e^{-i\theta }\) para obter
$$
r=e^{-i\theta }\int_{a}^{b}F\left( t\right) \,dt=\int_{a}^{b}e^{-i\theta} F\left( t\right) \,dt.
$$
Como \(r\) é real, \(r=\text{Re}\left\{ r\right\}\) ou seja
$$
r=\text{Re}\int_{a}^{b}e^{-i\theta }F\left( t\right) \,dt=\int_{a}^{b}\text{Re}\left[ e^{-i\theta }F\left( t\right) \right] \,dt,
$$
onde se aplicou a propriedade (3). Considerando que, para qualquer complexo, vale a relação \(\text{Re}\left\{ z\right\} \leq \left\vert z\right\vert\) então o integrando é \(\text{Re}\left[ e^{-i\theta}F\left( t\right) \right] \leq \left\vert e^{-i\theta }F\left( t\right) \right\vert =\left\vert F\left( t\right) \right\vert\) para todo \(t\), lembrando que a última igualdade vale porque \(e^{-i\theta }\) é um complexo com valor absoluto igual a um. Concluimos que
$$
\left\vert \int_{a}^{b}F\left( t\right) \,dt\right\vert =r\leq \int_{a}^{b}\left\vert F\left( t\right) \,\right\vert \,dt.
$$
Fica assim mostrada a propriedade.

A integral de contorno

Definimos a integral de contorno, ou integral curvilínea, \(\int_{C}f\left( z\right) \,dz\) onde \(C\) é um caminho qualquer e \(f=u+iv\) é uma função contínua em \(a\leq t\leq b\) como
$$
\int_{C}f\left( z\right) \,dz=\int_{a}^{b}f\left( z\left( t\right) \right)z^{\prime }\left( t\right) dt.
$$
Observe que \(f\left( z\right)\) pode ser definida para qualquer ponto do plano complexo mas, na avaliação da integral, somente são considerados seus valores sobre a curva \(C\). Estas integrais são avaliadas da seguinte forma: descrevemos o caminho \(C\) por meio de alguma parametrização \(z\left( t\right) =x\left( t\right) +iy\left(t\right)\), encontramos a diferencial,
$$
dz=\left[ x^{\prime }\left( t\right) +iy^{\prime }\left( t\right) \right] dt
$$
e os valores da função sobre este caminho transformando a integral de caminho em uma integral definida complexa, definida na seção anterior que, por sua vez, se reduz a duas integrais definidas ordinárias. Se \(f=u+iv\) então
$$
\int_{C}f\left( z\right) \,dz=\int_{a}^{b}\left( u+iv\right) \left(
x^{\prime }+iy^{\prime }\right) dt=\int_{a}^{b}\left[ \left( ux^{\prime
}-vy^{\prime }\right) +i\left( u\,y^{\prime }+vx^{\prime }\right) \right] dt.
$$
Lembramos que o contorno deve ser composto por um número finito de arcos regulares, onde \(z^{\prime }\neq 0\).

Exemplo 1: Calcule a integral de contorno
$$
I=\int\limits_{C}f\left( z\right) dz \;\; \text{ onde } \;\; f\left( z\right)=2x-y+ix^{2},
$$
e \(C\) é o segmento de reta ligando os pontos \(0\) a \(1+i\). O primeiro passo é parametrizar este segmento. Ele pode ser descrito como
$$
C: z=\left( 1+i\right) t,\; \; 0\leq t\leq 1.
$$
Sobre este segmento \(x=t\) e \(y=t\) e, portanto \(f\left( z\right)=2t-t+it^{2},\) enquanto \(dz=z^{\prime }dt=\left( 1+i\right) dt\). A integral é
$$
I=\left( 1+i\right) \int_{0}^{1}\left( t+it^{2}\right) dt=\left( 1+i\right)\left. \left( \frac{t^{2}}{2}+i\frac{t^{3}}{3}\right) \right\vert _{0}^{1}
=\frac{1}{6}\left( 1+5i\right).
$$

Exemplo 2: Vamos calcular a integral de contorno
$$
I=\int\limits_{C}f\left( z\right) dz \text{ onde }f\left( z\right)=\left\vert z\right\vert
\;\;\;\;\text{ e }\;\;\;\; C=\left\{ z=re^{i\theta }, 0\leq \theta \leq \pi ,\; r\; \text{ constante }\right\}.
$$
Note que \(C\) é o arco da circunferência de raio \(r\) no primeiro e segundo quadrantes. Sobre \(C\), \(f\left( z\right) =\left\vert z\right\vert =r\). Como \(r\) é constante é conveniente parametrizar o caminho usando a variável \(\theta\), fazendo
$$
z\left( \theta \right) =r\left( \cos \theta +i\text{sen }\theta \right) ,\; \; 0\leq \theta \leq \pi,
$$
enquanto a diferencial é
$$
dz=z^{\prime }d\theta =r\left( -\text{sen }\theta +i\cos \theta \right) d\theta.
$$
Juntando os termos a integral procurada é
$$
I=\int_{0}^{\pi }r^{2}\left( -\text{sen }\theta +i\cos \theta \right) d\theta=r^{2}\left[ \left. \cos \theta \right\vert _{0}^{\pi }+i\left. \text{sen }
\theta \right\vert _{0}^{\pi }\right] =-2r^{2}.
$$
Observe que, se o caminho fosse fechado, \(z=re^{i\theta },\; 0\leq \theta \leq 2\pi\), a integral seria nula pois
$$
I=\int_{0}^{2\pi }r\left( ire^{i\theta }\right) d\theta =ir^{2}\int_{0}^{2\pi }e^{i\theta }d\theta =0.
$$
Para calcular a integral neste segundo caso usamos a parametrização \(z=re^{i\theta }\), \(0\leq \theta \leq 2\pi\), com a respectiva diferencial \(dz=ire^{i\theta }d\theta\).

Propriedades da integral de contorno

As seguintes propriedades valem para a integral de contorno:

i) A integral de contorno é linear:
$$
\int_{C}\left[ f\left( z\right) \,+g\left( z\right) \right]
\,dz=\int_{C}f\left( z\right) \,dz+\int_{C}g\left( z\right) \,dz
$$
$$
\int_{C}\alpha f\left( z\right) \,dz=\alpha \int_{C}f\left( z\right) \,dz,
$$
onde \(\alpha\) é uma constante complexa.

ii) Se \(C\) é a união de caminhos disjuntos, \(C=C_{1}\cup C_{2}\cup \ldots \cup C_{r}\) então
$$
\int_{C}f\left( z\right) \,dz=\int_{C_{1}}f\left( z\right) \,dz+\int_{C_{2}}f\left( z\right) \,dz+\ldots +\int_{C_{r}}f\left( z\right) \,dz.
$$
Segue daí que a integral ao longo de um caminho fechado não depende do ponto inicial onde se inicia o caminho. Dizemos que ela é invariante
por translações do parâmetro.

iii) A integral muda de sinal se percorremos o caminho em sentido oposto:
$$
\int_{-C}f\left( z\right) \,dz=-\int_{C}f\left( z\right) \,dz.
$$
Para mostrar esta afirmação fazemos
$$
-C=\left\{ z_{1}\left( t\right) =z\left( -t\right) ;\;-b\leq t\leq -a\right\}
$$
e, portanto,
$$
I=\int_{-C}f\left( z\right) \,dz=\int_{-b}^{-a}f\left( z_{1}\left( t\right) \right) z_{1}^{\prime }\left( t\right) dt.
$$
Como \(z_{1}\left( t\right) =z\left( -t\right)\) temos que
$$
I=\int_{-b}^{-a}f\left( z\left( -t\right) \right) \frac{dz\left( -t\right) }{dt}dt.
$$
Fazendo a mudança de variáveis \(\tau =-t\) temos
$$
dt=-d\tau \;\;\; \text{ e }\;\;\; \frac{d}{dt}=\frac{d}{d\tau }\frac{d\tau }{dt}=-\frac{d}{d\tau }
$$
e a integral pode ser escrita como
$$
I=\int_{b}^{a}f\left( z\left( \tau \right) \right) \,\frac{dz\left( \tau
\right) }{d\tau }\,d\tau =-\int_{a}^{b}f\left( z\left( \tau \right) \right)
dz=-\int_{C}f\left( z\right) \,dz.
$$
iv) Vale a desigualdade
$$
\left\vert \int_{C}f\left( z\right) \,dz\right\vert \leq \int_{C}\left\vert
f\left( z\right) \right\vert \,\left\vert dz\right\vert ,
$$
que é decorrente da propriedade semelhante válida para \(\int_{a}^{b}F\left( t\right) \,dt\), propriedade (3).

v) Se \(f\) é uma função contínua sobre o arco \(C\) então existe uma constante \(M\) positiva tal que \(\left\vert f\left( z\right) \right\vert \leq M,\;\forall z\in C\). Daí, e da propriedade anterior,
$$
\left\vert \int_{C}f\left( z\right) \,dz\right\vert \leq \int_{C}\left\vert
f\left( z\right) \right\vert \,\left\vert dz\right\vert \leq
M\int_{C}\left\vert dz\right\vert =ML,
$$
onde \(L\) é o comprimento do arco \(C\). A última igualdade pode ser justificada da seguinte forma: se \(z\left( t\right) =x\left( t\right) +iy\left( t\right)\) então \(dz=dx+idy\) e
$$
\int_{C}\left\vert dz\right\vert =\int_{a}^{b}\sqrt{dx^{2}+dy^{2}}
=\int_{a}^{b}\sqrt{\left( \frac{dx}{dt}\right) ^{2}+\left( \frac{dy}{dt}
\right) ^{2}}dt=L.
$$

vi) A integral \(\int_{C}f\left( z\right) \,dz\) não depende da escolha de uma parametrização para \(C\).

Representando o caminho \(C\) por meio da parametrização \(z\left(t\right)\), \(t_{1}\leq t\leq t_{2}\) então calculamos
$$
I=\int_{C}f\left( z\right) \,dz=\int_{t_{1}}^{t_{2}}f\left( z\left( t\right)\right) z^{\prime }\left( t\right) dt.
$$
Podemos também usar outra parametrização dada por \(z_{1}\left(\tau \right) =z\left( t\left( \tau \right) \right)\), \(\tau _{1}\leq \tau
\leq \tau _{2}\) onde \(t\left( \tau \right)\) é uma função crescente e monótona, \(t_{1}=t\left( \tau _{1}\right) ,\;t_{2}=t\left(
\tau _{2}\right)\). Neste caso
$$
I=\int_{C}f\left( z\right) \,dz=\int_{\tau _{1}}^{\tau _{2}}f\left(
z_{1}\left( \tau \right) \right) z^{\prime }\left( \tau \right) d\tau .
$$
Mas
$$
\frac{d\left( z_{1}\left( \tau \right) \right) }{d\tau }=\frac{d\left(
z\right) }{dt}\frac{dt}{d\tau }
$$
portanto
$$
I=\int_{\tau _{1}}^{\tau _{2}}f\left( z_{1}\left( \tau \right) \right) \frac{
d\left( z_{1}\left( \tau \right) \right) }{d\tau }d\tau =\int_{\tau
_{1}}^{\tau _{2}}f\left( z\left( t\left( \tau \right) \right) \right) \frac{
dz}{dt}\frac{dt}{d\tau }d\tau =\int_{t_{1}}^{t_{2}}f\left( z\left( t\right)
\right) \frac{dz}{dt}dt.
$$

Qualquer parametrização encontrada para a curva \(C\) pode ser usada na avaliação da integral, desde que o sentido seja preservado. Dizemos que a integral é invariante sob reparametrizações do caminho \(C\).

Exercício Resolvido: Calcule \(I=\int_{C}f\left(z\right) \,dz\) onde \(f\left( z\right) =z\) e \(C\) é um caminho qualquer ligando \(z_{1}\) a \(z_{2}\).

Vamos representar o caminho \(C\) por
$$
C=\left\{ z\left( t\right) =x\left( t\right) +iy\left( t\right) ;\;a\leq
t\leq b\right\} ,\;z\left( a\right) =z_{1},\;z\left( b\right) =z_{2}.
$$
Então \(dz=dx+idy=\left( x^{\prime }+iy^{\prime }\right) dt\) e a integral procurada é
$$
I=\int_{a}^{b}z\left( t\right) z^{\prime }\left( t\right)
\,dt=\int_{a}^{b}\left( x+iy\right) \left( x^{\prime }+iy^{\prime }\right)
dt=
$$
$$
=\int_{a}^{b}\left( x+iy\right) \left( x^{\prime }+iy^{\prime }\right)
dt=\int_{a}^{b}\left[ \left( xx^{\prime }-yy^{\prime }\right) +i\left(
xy^{\prime }+yx^{\prime }\right) \right] dt.
$$
Observamos agora que o integrando é uma diferencial exata:
$$
\frac{d}{dt}\left( x^{2}-y^{2}+2ixy\right) =2\left[ \left( xx^{\prime
}-yy^{\prime }\right) +i\left( xy^{\prime }+yx^{\prime }\right) \right] ,
$$
portanto
$$
I=\frac{1}{2}\int_{a}^{b}\frac{d}{dt}\left( x^{2}-y^{2}+2ixy\right) dt=\frac{
1}{2}\left. \left( x^{2}-y^{2}+2ixy\right) \right\vert _{a}^{b}=
$$
$$
\frac{1}{2}\left. z^{2}\right\vert _{a}^{b}=\frac{1}{2}\left[ z^{2}\left(
b\right) -z^{2}\left( a\right) \right] =\frac{1}{2}\left[ z_{2}^{2}-z_{1}^{2}
\right] .
$$
Aproveitamos este exercício para indicar um resultado importante, que será estudado na próxima seção. Se o caminho \(C\) é fechado então \(z\left( a\right) =z\left( b\right)\) e esta integral, sobre o caminho fechado, é nula:
$$
\int_{C}z\,dz\equiv \oint z\,dz=0.
$$
O sinal \(\oint\) indica integração sobre um caminho fechado. Como veremos este resultado não é uma coincidência, mas faz parte de um resultado mais geral que será expresso pelo teorema de Cauchy, descrito na próxima seção.

Exercícios :

1. Dados os pontos \(a=\left( 1,~0\right)\), \(b=\left( 0,~m\right), c=\left( 1,~m\right)\), calcule \(\int\limits_{C}f\left( z\right) dz\) onde \(f\left( z\right) =\bar{z}\) e \(C\) é o caminho que liga a origem ao ponto \(c\) ao longos de três percursos: \(\mathcal{O}c,\; \mathcal{O}ac \;\) e \(\mathcal{O}bc\).

2. Calcule \(\int\limits_{C}f\left( z\right)dz\) onde:

a. \( f\left( z\right) =\left\vert z\right\vert ; C=\left \{ z=re^{i\theta},\; \pi /2\leq \theta \leq \pi \right\}\)

b. \(f\left( z\right) =z^{2};\; C=\left\{ z=re^{i\theta },\; 0\leq \theta \leq \pi \right\}\)

c. \(f\left( z\right) =z^{2}; C=\left\{ z=re^{i\theta },\ -\pi \leq \theta \leq \pi \right\}\)

d. \(f\left( z\right) =\sqrt{z}; C=\left\{ z=re^{i\theta },\ 0\leq \theta \leq 2\pi \right\}\)

e. \(f\left( z\right) =\sqrt{z}; C=\left\{ z=re^{i\theta },\ -\pi \leq \theta \leq \pi \right\}\)

f. \(f\left( z\right) =\left\vert z\right\vert\), ao longo do segmento de reta de zero até \(-2+3i\).

g. \(f\left( z\right) =x^{2}-y^{2}+i\left( x-y^{2}\right)\), ao longo do segmento de reta de zero até \(3+2i\).

h. \(f\left( z\right) =y-x^{2}\), ao longo dos caminhos \(\mathcal{O}ac\) e \(\mathcal{O}bc\), onde \(\mathcal{O=}\left( 0, 0\right) , a=\left(2, 0\right) , b=\left( 0, 1\right)\) e \(c=\left( 2, 1\right)\).

3. Se \(C\) é um caminho qualquer ligando os pontos \(z_{1}\) a \(z_{2}\) mostre que \(\int_{C}dz= z_{2}-z_{1}\).

Algumas soluções:

1) \(\int_{\mathcal{O}c}=\frac{1+m^{2}}{2},\; \int_{\mathcal{O}ac}=\frac{1}{2}\left( 1+m^{2}+im\right) ,\; \int_{\mathcal{O}bc}=\frac{1}{2} \left(
1+m^{2}-2im\right)\). As integrais podem ser calculadas da seguinte forma: Representamos graficamente os três caminhos na figura 4 e buscamos uma parametrização para cada um deles.

O caminho direto \(\mathcal{O}c\) é a reta \(\left\{ z\left( t\right) =\left(1+im\right) t,\ 0\leq t\leq 1\right\}\). Sua diferencial é \( dz=z^{\prime }dt=\left( 1+im\right) dt\), enquanto o integrando é \(\bar{z}=\left( 1-im\right) t\). A integral pode ser avaliada como
$$
I_{1}=\int_{\mathcal{O}c}\bar{z}dz=\int_{0}^{1}\left(1-im\right) t\left(1+im\right) dt=\left( 1+m^{2}\right) \int_{0}^{1}tdt=\frac{1+m^{2}}{2}.
$$

ii) O caminho \(\mathcal{O}ac\) é a união de dois arcos simples,
$$
\mathcal{O}ac=\left\{ z\left( t\right) =t,\ 0\leq t\leq 1\right\} \cup \left\{ z\left( t\right) =1+imt,\ 0\leq t\leq 1\right\}.
$$
As diferenciais são, respectivamente, \(dz=dt\) e \(dz=imdt\) sobre cada parte do caminho. A integral pode ser partida em dois pedaços, \(\int_{\mathcal{O}ac}=\int_{\mathcal{O}a}+\int_{ac}\), ou seja
$$
I_{2}=\int_{0}^{1}tdt+\int_{0}^{1}\left( 1-imt\right) imdt=\int_{0}^{1}tdt+im\int_{0}^{1}dt+m^{2}\int_{0}^{1}tdt=\frac{1}{2}\left(1+m^{2}+2im\right).
$$

iii) O caminho \(\mathcal{O}bc\) é a união dos arcos
$$
\mathcal{O}bc=\left\{ z\left( t\right) =imt,\ 0\leq t\leq 1\right\} \cup \left\{ z\left( t\right) =t+im,\ 0\leq t\leq 1\right\}.
$$
As diferenciais são \(dz=imdt\) e \(dz=dt\) sobre cada parte do caminho e a integral pode ser avaliada como
$$
I_{3}=\int_{\mathcal{O}bc}=\int_{0}^{1}\left( -imt\right)imdt+\int_{0}^{1}\left( t-im\right)dt =
$$
$$
=m^{2}\int_{0}^{1}tdt+\int_{0}^{1}tdt-im\int_{0}^{1}tdt=\frac{1}{2}\left(1+m^{2}-2im\right).
$$

Observamos que o valor da integral é diferente para cada caminho tomado, neste caso.
$$
\begin{array}{rll}
\text{2a. }\; \left(i-1\right) r^{2}\;\; & \text{b. }\; -2r^{3}/3 \;\; & \text{c. }\; \text{zero} \\
\text{d. }\; -4r\sqrt{r}/3 \;\; & \text{e. }\; 4r\sqrt{r}/3i \;\; & \text{f. }\; \sqrt{13}\left(3i-2\right) /2
\end{array}
$$

Teorema de Cauchy

O seguinte teorema foi originalmente foi apresentada por Cauchy no início da década de 1800, afirmando que a integral de uma função analítica, realizada sobre um contorno fechado, é sempre nula.

Antes de enunciar o teorema de Cauchy vamos definir o sentido orientação de um contorno e fazer uma breve revisão sobre o teorema de Green.

Definição. Dizemos que o contorno fechado \(C\) é positivamente orientado se um observador com trajetória sobre \(C\) deixa sempre a região interior envolvida por \(C\) à sua esquerda.

Teorema de Green1: Sejam \(P\left( x,y\right)\) e \(Q\left( x,y\right)\) duas funções definidas em uma região \(R\) simplesmente conexa, com derivadas primeiras contínuas. Então, para qualquer contorno fechado simples \(C\) contido em \(R\), vale

(4)

$$
\iint_{R^{\prime }}\left( \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) dxdy=\oint_{C}Pdx+Qdy,
$$
onde \(R^{\prime }\) é a região interior a \(C\). Uma notação útil pode ser utilizada escrevendo-se \(\vec{t}=\left(t_{x},\,t_{y}\right)\), para um vetor tangente ao contorno \(C\), e \(\vec{n} =\left( n_{x},\,n_{y}\right)\) um vetor unitário normal à \(C\). Então
$$
\left( dx,\,dy\right) =\vec{t}ds,\;\left( dy,\;-dx\right) =\vec{n}ds.
$$

1. A demonstração pode ser vista em qualquer livro de cálculo. Por exemplo, consulte: Ávila, G.: Cálculo, Funções de várias variáveis, Vol 3, Ed. LTC.

Definindo um vetor \(F=\left( Q,\,-P\right)\) podemos escrever a equação (4) como
$$
\iint_{R^{\prime }}\text{div}\vec{F}\,dxdy=\oint_{C}\vec{F}\cdot \vec{n}\,ds.
$$

Teorema de Cauchy: Seja \(f\) uma função analítica em uma região simplesmente conexa \(R\). Então
$$
\oint_{C}f\left( z\right) \,dz=0,
$$
onde \(C\) é qualquer caminho fechado em \(R\). Equivalentemente, a integral
$$
\int_{z_{1}}^{z_{2}}f\left( z\right) \,dz
$$
não depende da escolha do caminho tomado mas apenas dos pontos extremos.

Demonstração: Fazemos \(f=u+iv\) e\(\;z=x+iy\). Então
$$
I=\oint_{C}f\left( z\right) \,dz=\oint_{C}\left( u+iv\right) \left(dx+idy\right) =
$$
$$
\oint_{C}\left( udx-vdy\right) +i\oint_{C}\left( udy+vdx\right).
$$
Usamos agora o teorema de Green, equação (4), para tansformar estas integrais em
$$
I=-\iint_{R^{\prime }}\left( \frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right) dxdy+i\iint_{R^{\prime }}\left( \frac{\partial u}{
\partial x}-\frac{\partial v}{\partial y}\right) dxdy=0.
$$
Notamos que as integrais acima são nulas devido às condições de Cauchy-Riemann, \(u_{x}=v_{y}\) e \(v_{x}=-u_{y}\), válidas para funções analíticas. A equivalência dos enunciados pode ser mostrada das seguinte forma: construímos dois caminhos \(C_{1}\) e \(C_{2}\) ligando os pontos \(z_{1}\) e \(z_{2}\) e supomos que as integrais sobre os caminhos são iguais, \(\int_{C_1}=\int_{C_{2}}\). A integral avaliada sobre o caminho fechado \(C_{1}\cup \left(-C_{2}\right)\) é nula,
$$
\oint_{C}f\left( z\right) \,dz=\int_{C_{1}}f\left( z\right)\,dz-\int_{C_{2}}f\left( z\right) \,dz=0,
$$
já que a integração não depende do caminho escolhido. Por outro lado, se a integral fechada é nula concluímos que a integração não depende do caminho pois
$$
0=\oint_{C}=\int_{C_{1}}-\int_{C_{2}}\Rightarrow \int_{C_{1}}=\int_{C_{2}}.
$$

Integrais e primitivas

2. Lembrando: dizemos que \(F\) é uma primitiva de \(f\) se \(F^{\prime }=f\).

O teorema de Cauchy, também conhecido como teorema de Cauchy-Goursat, é o teorema fundamental da teoria das funções analíticas. Os principais resultados que ainda estudaremos são consequência direta deste teorema. Em particular veremos que funções analíticas possuem derivadas de todas as ordens e estas derivadas são contínuas. Nesta seção mostraremos que uma função analítica possue uma primitiva2.

Teorema: Seja \(f\) uma função analítica em uma região \(R\) simplesmente conexa. Então a forma geral de sua primitiva é
$$
F\left( z\right) =\int_{z_0}^{z}f\left( w\right) dw+c,
$$
onde \(c\) é uma constante arbitrária, \(z_0\) é um ponto fixo qualquer de \(R\) e a integração é feita ao longo de um contorno inteiramente contido em \(R\). Além disto a função \(F\left( z\right)\) definida desta forma é analítica.

Demonstração: A função \(F\left( z\right)\) está bem definida uma vez que a integral não depende do caminho escolhido. Sua derivada, por definição, é
$$
F^{\prime }\left( z\right) =\lim_{h\rightarrow 0}\frac{1}{h}\left[ F\left(z+h\right) -F\left( z\right) \right].
$$
Note que
$$
F\left( z+h\right) -F\left( z\right) =\left(
\int_{z_0}^{z+h}-\int_{z_0}^{z}\right) f\left( w\right)
dw=\int_{z}^{z+h}f\left( w\right) dw.
$$
Definindo uma função auxiliar \(\eta \left( z,w\right) =f\left(w\right) -f\left( z\right)\) podemos escrever
$$
F^{\prime }\left( z\right) =\lim_{h\rightarrow 0}\frac{1}{h}\int_{z}^{z+h}
\left[ f\left( z\right) +\eta \left( z,w\right) \right] dw=f\left( z\right)
+\lim_{h\rightarrow 0}\frac{1}{h}\int_{z}^{z+h}\eta \left( z,w\right) dw.
$$
Na relação acima foi usado o seguinte fato:
$$
\lim_{h\rightarrow 0}\frac{1}{h}\int_{z}^{z+h}dw=1.
$$
Resta mostrar que o limite no segundo termo, é nulo. Para isto observe que, em módulo, vale
$$
\left\vert \frac{1}{h}\int_{z}^{z+h}\eta \left( z,w\right) dw\right\vert \leq \frac{1}{\left\vert h\right\vert }\int_{z}^{z+h}\left\vert \eta \left(
z,w\right) \right\vert \left\vert dw\right\vert.
$$
Como \(f\left( z\right)\) é analítica, portanto contínua, dado \(\varepsilon \gt 0\;\) existe \(\;\delta \gt 0\;\) tal que
$$
\left\vert \eta \left( z,w\right) \right\vert =\left\vert f\left( w\right)-f\left( z\right) \right\vert \gt \varepsilon \;\text{ para }\;\left\vert
w-z\right\vert \gt \delta.
$$
Portanto
$$
\left\vert \frac{1}{h}\int_{z}^{z+h}\eta \left( z,w\right) dw\right\vert \lt \frac{\varepsilon }{\left\vert h\right\vert }\int_{z}^{z+h}\left\vert
dw\right\vert =\varepsilon.
$$
No limite \(h \rightarrow 0\) temos que \(\varepsilon \rightarrow 0\) de onde concluímos, como pretendíamos, que \(F’=f\).

Corolário: Nas mesmas condições do teorema acima temos que
$$
\int_{z_0}^{z_{1}}f\left( z\right) dz=F\left( z_{1}\right) -F\left(z_0\right),
$$
onde \(F\left( z\right)\) é uma primitiva qualquer de \(f\).

Exemplo 3: A função abaixo é uma primitiva de \(z^n\)
$$
\frac{z^{n+1}}{n+1}
$$
para \(n\) inteiro não negativo. A seguinte integral pode ser diretamente avaliada:
$$
\int_{z_{1}}^{z_{2}}z^{n}dz=\frac{1}{n+1}\left. z^{n+1}\right\vert_{z_{1}}^{z_{2}}=\frac{1}{n+1}\left( z_{2}^{n+1}-z_{1}^{n+1}\right).
$$

Uma observação importante será útil na solução de diversos problemas que se apresentarão. Suponha que desejamos calcular a integral de caminho
$$
\oint_{C_{0}}f\left( z\right) \,dz,
$$
onde \(f\left(z\right)\) é analítica em uma região \(R\), exceto em regiões \(R_{1},\; R_{2}\; \text{ e } \; R_{3}\) contidas em \(R\), e \(C_{0}\) é um caminho que envolve as regiões \(R_{1},\; R_{2}\; \text{ e } \; R_{3}\) uma vez no sentido positivo, como representado na figura 5. Podemos construir caminhos arbitrários \(C_{1},\;C_{2}\;\; \text{ e } \;\; C_{3}\) envolvendo estas regiões e, com elas, um novo contorno
$$
C=C_{0}\cup T_{1}\cup -C_{1}\cup -T_{1}\cup T_{2}\cup -C_{2}\cup -T_{2}\cup T_{3}\cup -C_{3}\cup -T_{3},
$$
de forma que \(f\left( z\right)\) é analítica em \(C\) e na região circulada, sendo portanto \(\oint_{C}f\left( z\right) \,dz=0\). Notando que as integrais sobre os caminhos \(T_{i}\) e \(-T_{i} \;\; (i=1,2,3)\) se cancelam restam apenas os termos
$$
0=\oint_{C}f\left( z\right) \,dz=\int_{C_{0}}f\left( z\right)\,dz-\int_{C_{1}}f\left( z\right) \,dz-\int_{C_{2}}f\left( z\right)\,dz-\int_{C_{3}}f\left( z\right) \,dz,
$$
de onde se conclui que
$$
\int_{C_{0}}f\left( z\right) \,dz=\int_{C_{1}}f\left( z\right)
\,dz+\int_{C_{2}}f\left( z\right) \,dz+\int_{C_{3}}f\left( z\right) \,dz.
$$

Cabe notar que o mesmo procedimento pode ser usado para integrar sobre regiões onde existam um número finito arbitrário de regiões onde \(f\left( z\right)\) não é analítica.

Exemplo 4: Se \(C\) é um contorno qualquer envolvendo \(z_0\) uma vez, no sentido positivo, calcule
$$
I=\oint\limits_{C}\frac{dz}{z-z_0}.
$$
Pela observação feita acima verificamos que a integral tem o mesmo resultado se for avaliada ao longo de outro caminho \(C^{\prime }\) qualquer em torno de \(z_0\). Escolheremos então um caminho que admita uma parametrização simples e facilite a solução do problema. Em particular podemos tomar \(C^{\prime }\) como a circunferência de centro em \(z_0\) e raio \(\delta\),
$$
C^{\prime }:\left\vert z-z_0\right\vert =\delta ,
$$

tomando o cuidado de que \(\delta\) seja suficientemente pequeno para que \(C^{\prime }\) esteja inteiramente contida na região interior à \(C\). Neste caso podemos escrever
$$
z-z_0=\delta e^{i\theta },\ 0\leq \theta \leq 2\pi ,
$$
$$
dz=i\delta e^{i\theta }d\theta .
$$
A integral se torna
$$
I=\int_{0}^{2\pi }\frac{i\delta e^{i\theta }d\theta }{\delta e^{i\theta }}
=i\int_{0}^{2\pi }d\theta =2\pi i.
$$
Podemos resumir os resultados acima da seguinte forma:
$$
\oint\limits_{C}\frac{dz}{z-z_0}=\left\{
\begin{array}{ll}
0, & \;\;\text{ se }\;\;C\text{ não envolve }\;z_0 \\
2\pi i,\; & \;\;\text{ se }\;\;C\text{ envolve }\;z_0\text{ uma vez no sentido positivo.}
\end{array}
\right.
$$

Um conceito útil que será estudado com mais detalhes mais tarde é o de singularidades. Se uma função \(f\left( z\right)\) é analítica em toda uma região \(R\subset \mathbb{C}\), exceto em pontos isolados \(z_{i}\) então dizemos que \(z_{i}\) são singularidades isoladas de \(f\). Como exemplos, as funções
$$
f\left( z\right) =\frac{1}{z^{2}+1}\;\; \text{ e } \;\; g\left( z\right) =\frac{z}{\text{sen }z}
$$
possuem singularidades isoladas, respectivamente, em \(z=\pm i\) e \(z=n\pi\;\; \left( n=0,~\pm 1,~\pm 2,\ldots \right)\).

Exercícios:

Verifique se são nulas as seguintes integrais \(\oint\nolimits_{C}f\left( z\right) dz\):

1. \(f\left( z\right) =\frac{z+1}{z-3}\), onde \(C\) é o círculo \(\left\vert z\right\vert =2\).

2. \(f\left( z\right) =\frac{3z^{2}}{z+2i}\), onde \(C\) é o círculo \(\left\vert z\right\vert =\frac{3}{2}\).

3. \(f\left( z\right) =\frac{3ze^{z}}{z^{2}+3}\), onde \(C\) é o círculo \(\left\vert z\right\vert =\frac{5}{4}\).

4. \(f\left( z\right) =\frac{\ln \left( z-2i\right) }{z+2}\), onde \(C\) é o quadrado de vértices \(\pm 1\pm i\).

5. \(f\left( z\right) =\frac{\ln \left( z+1\right) }{z^{2}-9}\), onde \(C\) é o círculo \(x^{2}+y^{2}-2x=0\).

6. \(f\left( z\right) =\frac{\ln \left( z+i\right) }{z^{2}-9}\), onde \(C\) é o círculo \(x^{2}+y^{2}+2x=0\).

7. \(f\left( z\right) =\frac{\ln \left( z-1+i\right) }{z^{2}+9}\), onde \(C\) é o quadrado de vértices \(\pm 1\pm i\).

8. \(f\left( z\right) =\frac{1}{z^{2}}\), onde \(C\) é qualquer caminho que envolve a origem uma vez, no sentido positivo.

9. Calcule a integral de \(f\left( z\right) =1/z\) sobre o caminho \(C\) de \(-i\) até \(i\) passando pelo semiplano \(\text{Re}\left( z\right) >0\).

10. Calcule a integral de \(f\left( z\right) =1/z\) sobre o caminho \(C\) de \(-i\) até \(i\) passando pelo semiplano \(\text{Re}(z) \lt 0\).

11. Combine os resultados dos exercícios (9) e (10) para obter\( \oint\nolimits_{C}\frac{dz}{z}\), onde \(C\) é qualquer caminho que envolve a origem uma vez no sentido positivo.

A fórmula da integral de Cauchy

Outro resultado importante devido a Cauchy é a fórmula da integral. Ela expressa o fato de que uma função analítica em uma região \(R\) fica completamente determinada por seus valores na fronteira de \(R\). Ela também pode ser usada para expressar sob formas integrais todas as derivadas de uma função holomorfa.

Teorema: Seja \(f\) uma função analítica em uma região simplesmente conexa \(R\). Se \(C\) é um contorno fechado inteiramente contido em \(R\) que envolve o ponto \(z_0\) uma vez no sentido positivo então

(5)

$$
\oint\limits_{C}\frac{f\left( z\right) }{z-z_0}dz=2\pi if\left(z_0\right).
$$

Demonstração: Iniciamos por reduzir a integração ao contorno
$$
C_{\delta }:\left\vert z-z_0\right\vert =\delta ,
$$
um círculo com centro em \(z_0\) e raio \(\delta\), com \(\delta\) suficientemente pequeno para que \(C_{\delta }\) esteja na região interior à \(C\). Como o integrando é analítico na região hachurada (figura 6) então
$$
\oint\limits_{C\cup -C_{\delta }}\frac{f\left( z\right) }{z-z_0} dz=0\Rightarrow \oint\limits_{C}\frac{f\left( z\right) }{z-z_0} dz=\oint\limits_{C_{\delta }}\frac{f\left( z\right) }{z-z_0}dz.
$$

Figura 6

Defina a função auxiliar
$$
g\left( z\right) =\left\{ \begin{array}{ll}
\frac{f\left( z\right) -f\left( z_0\right) }{z-z_0}, & \;\;\text{ se }\;\; z\neq z_0 \\
f\left( z_0\right) , & \;\;\text{ se }\;\;z=z_0,
\end{array}
\right.
$$
observando que \(g\left( z\right)\) é analítica em \(z_0\). Isto significa que
$$
\oint\limits_{C_{\delta }}g\left( z\right) dz=0=\oint\limits_{C_{\delta }}\frac{f\left( z\right) }{z-z_0}dz-\oint\limits_{C_{\delta }}\frac{f\left(
z_0\right) }{z-z_0}dz.
$$
A segunda integral já foi calculada em um exemplo anterior,
$$
\oint\limits_{C_{\delta }}\frac{f\left( z_0\right) }{z-z_0}dz=f\left(z_0\right) \oint\limits_{C_{\delta }}\frac{dz}{z-z_0}=2\pi if\left(z_0\right) ,
$$
onde \(f\left( z_0\right)\) foi tirado de dentro do sinal de integração por ser uma constante com relação à variável integrada. Fica assim mostrado o teorema.

O teorema acima foi enunciado e demonstrado para valores fixos de \(z_0\). Note, no entanto que nenhuma consideração foi feita para que esse seja um ponto particular no plano complexo. Podemos reafirmar o teorema para pontos variáveis de \(\mathbb{C}\), da seguinte forma: se \(f\) é uma função analítica então ela assume os seguintes valores sobre pontos \(z\) contidos na região interior à \(C\),
$$
f\left( z\right) =\frac{1}{2\pi i}\oint\limits_{C}\frac{f\left( w\right) }{w-z}dw.
$$
A variável de integração foi renomeada para diferenciá-la da variável livre, \(z\). Isto significa que uma função analítica pode ser avaliada no ponto \(z\) interior à curva \(C\) se conhecermos somente seus valores sobre o contorno. Observe que \(z\) é uma singularidade isolada do integrando, embora \(f\left( z\right)\) seja analítica.

Exemplo 5: Usando a fórmula integral de Cauchy podemos calcular
$$
I=\oint\limits_{C}\frac{\text{sen }z}{z-i}dz;\ \text{onde }C:\left\vert z-1\right\vert =2.
$$
O único ponto singular do integrando é \(z=i\), que está na região interior ao contorno \(C\), como mostrado na figura.

Tomamos então \(z_0=i\) e \(f\left( z\right) =\text{sen }z\) para uso da fórmula (1). Como resultado
$$
\oint\limits_{C}\frac{\text{sen }z}{z-i}dz=2\pi if\left( i\right) =\frac{2\pi i}{2i}\left( e^{-1}-e\right) =\pi \left( \frac{1}{e}-e\right).
$$
O cálculo do seno foi feito das seguinte forma: por definição
$$
\text{sen }z=\frac{1}{2i}\left( e^{iz}-e^{-iz}\right) ,
$$
portanto,
$$
\text{sen }i=\frac{1}{2i}\left( e^{-1}-e\right).
$$

Exemplo 6: Para calcular
$$
I=\oint\limits_{C}\frac{zdz}{\left( 9-z^{2}\right) \left( z+i\right) }; \;\; \text{onde }\;\; C:\left\vert z\right\vert =2
$$
observamos que o integrando possui três pontos singulares, que são \(z=-i\) e \(z=\pm 3\). Os pontos \(z=\pm 3\), no entanto, não estão dentro da região envolvida pelo contorno, de modo que podemos tomar
$$
z_0=-i,\ f\left( z\right) =\frac{z}{\left( 9-z^{2}\right) },
$$
e a integral é
$$
I=2\pi if\left( -i\right) =2\pi i\left( \frac{-i}{9+1}\right) =\frac{\pi }{5}.
$$

Exemplo 7: O cálculo da seguinte integral
$$
I=\oint\limits_{C}\frac{dz}{z^{2}+1}
$$
onde \(C\) é o retângulo de vértices \(\pm 2\pm 2i\) pode ser feito de duas formas. Os pontos \(z=\pm i\) são as únicas singularidades do integrando e ambos estão dentro da região limitada pelo contorno \(C\).

A integral pode ser reduzida ao cálculo sobre os contornos \(C_{1}\) e \(C_{2}\), como se mostra na figura, \(
\oint\nolimits_{C}=\oint\nolimits_{C_{1}}+\oint\nolimits_{C_{2}}\), assumindo a seguinte forma:
$$
I=I_{1}+I_{2}=\oint\limits_{C_{1}}\frac{dz}{\left( z+i\right) \left(
z-i\right) }+\oint\limits_{C_{2}}\frac{dz}{\left( z+i\right) \left(
z-i\right) },
$$
onde escrevemos \(z^{2}+1=\left( z+i\right) \left( z-i\right)\). Na primeira destas integrais apenas \(z_0=i\) é um ponto singular. Fazemos \(f\left(z\right) =1/\left( z+i\right)\) e usamos a fórmula da integral
$$
I_{1}=2\pi i~f\left( z_0\right) =2\pi i\frac{1}{2i}=\pi .
$$
Para calcular a segunda integral tomamos \(z_0=-i\) e \(f\left( z\right)=1/\left( z-i\right)\). Usando novamente a fórmula da integral temos
$$
I_{2}=2\pi i~f\left( z_0\right) =2\pi i\frac{-1}{2i}=-\pi ,
$$
de modo que a interal procurada é nula
$$
I=\oint\limits_{C}\frac{dz}{z^{2}+1}=I_{1}+I_{2}=\pi -\pi =0.
$$
Alternativamente, podemos proceder da seguinte forma. Escrevemos o integrando sob forma de frações parciais:
$$
\frac{1}{z^{2}+1}=\frac{1}{\left( z+i\right) \left( z-i\right) }=\frac{A}{z+i}+\frac{B}{z-i}.
$$
Para que a identidade seja satisfeita temos que identificar os numeradores, ou seja
$$
1=A\left( z-i\right) +B\left( z+i\right) =z\left( A+B\right) +i\left(-A+B\right) ,
$$
o que resulta no sistema
$$
\left.
\begin{array}{ll}
~~A+B & =0\ \\
-A+B & =-i,
\end{array}
\right\} \Rightarrow
\begin{array}{ll}
A & =i/2, \\
B & =-i/2.
\end{array}
$$
Verificamos assim que
$$
\frac{1}{z^{2}+1}=\frac{i/2}{z+i}-\frac{i/2}{z-i}
$$
e a integral procurada é
$$
I=\frac{i}{2}\left( \oint\limits_{C}\frac{dz}{z+i}-\oint\limits_{C}\frac{dz}{z-i}\right) =0
$$
pois cada uma das integrais tem a forma de
$$
\oint\limits_{C}\frac{dz}{z-z_0}=2\pi i
$$
onde \(C\) envolve apenas um ponto singular \(z_0\) uma vez, no sentido positivo.

Devemos nos recordar, neste ponto, de que funções reais de uma varíavel real são chamadas de funções analíticas se possuem derivadas de todas as ordens que são, por sua vez, também analíticas. Isto garante que elas possuem uma expansão de Taylor, em séries de potências. Esta terminologia tem origem no estudo das funções de variáveis complexas, devido ao teorema que se segue.

Teorema: Uma função analítica em uma região \(R\) do plano complexo possue derivadas de todas as ordens em \(R\). Estas derivadas são, também, analíticas e podem ser obtidas porderivação direta da fórmula de Cauchy, sendo dadas por
$$
f^{\prime }\left( z\right) =\frac{1}{2\pi i}\oint\limits_{C}\frac{f\left(w\right) }{\left( w-z\right) ^{2}}dw.
$$

Demonstração: Seja \(C\) um contorno fechado simples em \(R\) e \(z\) um ponto na região interior a este contorno. Podemos então escrever
$$
f\left( z\right) =\frac{1}{2\pi i}\oint\limits_{C}\frac{f\left( w\right) }{w-z}dw.
$$
Admitindo a possibilidade de inverter a ordem de operação entre a derivada e a integração obtemos
$$
f^{\prime }\left( z\right) =\frac{df\left( z\right) }{dz}=\frac{1}{2\pi i}
\frac{d}{dz}\oint\limits_{C}\frac{f\left( w\right) }{w-z}dw=\frac{1}{2\pi i}
\oint\limits_{C}\frac{d}{dz}\frac{f\left( w\right) }{w-z}dw.
$$
Observando que \(f\left( w\right)\) é constante, do ponto de vista de variações em \(z\), e
$$
\frac{d}{dz}\frac{1}{w-z}=\frac{1}{\left( w-z\right)^{2}}
$$
chegamos ao resultado que queremos mostrar:
$$
f^{\prime }\left( z\right) =\frac{1}{2\pi i}\oint\limits_{C}\frac{f\left(w\right) }{\left( w-z\right) ^{2}}dw.
$$
Como consequência do teorema podemos obter a derivada segunda derivando mais uma vez a última expressão,
$$
f^{^{\prime \prime }}\left( z\right) =\frac{1}{2\pi i}\oint\limits_{C}\frac{f\left( w\right) }{\left( w-z\right) ^{3}}dw,
$$
ou, por indução, a derivada de qualquer ordem

(6)

$$
f^{\left( n\right) }\left( z\right) =\frac{n!}{2\pi i}\oint\limits_{C}\frac{f\left( w\right) }{\left( w-z\right) ^{n+1}}dw.
$$

Exercícios:

1. Demonstre a equação (6).

Use a fórmula da integral de Cauchy para calcular:

2. \( \oint\limits_{\left\vert z-1\right\vert =2}\frac{zdz}{z-2}\)

4. \( \oint\limits_{\left\vert z-2i\right\vert =2}\frac{\text{sen }z}{z-i}dz\)

6. \( \oint\limits_{\left\vert z-1\right\vert =2}\frac{e^{iz}dz}{z+i}\)

8. \( \oint\limits_{\left\vert z-1\right\vert =2}\frac{e^{iz}dz}{\pi -2z}\)

3. \( \oint\limits_{\left\vert z+1\right\vert =2}\frac{zdz}{z+2}\)5. \( \oint\limits_{\left\vert z\right\vert=2}\frac{z\cos z}{z-i}dz\)

7. \( \oint\limits_{\left\vert z\right\vert =1}\frac{izdz}{1-2z}\)

9. \( \oint\limits_{\left\vert z-1\right\vert =2}\frac{e^{z}dz}{z^{2}-4}\)

10. \(\oint\limits_{C}\frac{dz}{z^{2}+1}\) onde \(C\) é o quadrado de vértices \(0\), \(2i,\ \pm 1+i\).

11. \(\oint\limits_{C}\frac{dz}{z^{2}+1}\) onde \(C\) é o quadrado de vértices \(0,-2i,\ \pm 1-i\).

12. \(\oint\limits_{C}\frac{ze^{z}dz}{z^{2}-2z-3}\) onde \(C\) é o losango de vértices \(\pm 2,\ \pm i\).

13. Use a fórmula da derivada para calcular \(\oint\limits_{\left\vert z\right\vert =3}\frac{\cos \left( z^{2}+3z-1\right) }{\left( 2z+3\right)^{2}}dz\)

Algumas respostas:
$$
\begin{array}{lll}
2)\; 4\pi i & 3)\; – 4\pi i & 4)\; \pi \left( 1-e^{2}\right) /e \\
5)\; -\pi \left( e^{2}+1\right) /e \;\; & 6)\; 2\pi ie \;\; & 7)\; \pi /2 \\
8)\; \pi & 9)\; i\pi e^{2}/2 & 10)\; \pi \\
11)\; -\pi & 12)\; \pi i/2e. & 13)\; 0.
\end{array}
$$

Exercício Resolvido:

5) Faça \(f\left( z\right) =z\cos z\), e \(z_0=i\). A integral é, portanto, \(I=2\pi i\left( i\cos i\right)\). Como
$$
\cos z=\frac{1}{2}\left( e^{iz}+e^{-iz}\right) \Rightarrow \cos i=\frac{1}{2} \left( e^{i^{2}}+e^{-i^{2}}\right) =\frac{1}{2}\left( e^{-1}+e\right) ,
$$
temos \(I=-\pi \left( e^{-1}+e\right) =-\pi \left( e^{2}+1\right) /e\).

13) Dada a integral
$$
I=\oint\limits_{\left\vert z\right\vert =3}\frac{\cos \left(z^{2}+3z-1\right) }{\left( 2z+3\right) ^{2}}dz
$$
defina
$$
I\left( w\right) =\oint\limits_{\left\vert z\right\vert =3}\frac{\cos
\left( z^{2}+3z-1\right) }{\left( 2z-2w\right) ^{2}}dz=\frac{1}{4}
\oint\limits_{\left\vert z\right\vert =3}\frac{\cos \left(
z^{2}+3z-1\right) }{\left( z-w\right) ^{2}}dz.
$$
Observe que a integral procurada é \(I=I\left( -3/2\right)\). Pela fórmula da derivada, obtida da fórmula da integral de Cauchy, temos
$$
I\left( w\right) =\frac{1}{4}\frac{d}{dw}\oint\limits_{\left\vert
z\right\vert =3}\frac{\cos \left( z^{2}+3z-1\right) }{z-w}dz,
$$
ond a última integral pode ser avaliada fazendo \(f\left( w\right) =\cos \left( w^{2}+3w-1\right)\). Portanto
$$
I\left( w\right) =\frac{2\pi i}{4}\frac{d}{dw}\left[ f\left( w\right) \right] =\frac{\pi i}{2}\frac{d}{dw}\left[ \cos \left( w^{2}+3w-1\right) \right] .
$$
Esta derivada pode ser obtida diretamente:
$$
I\left( w\right) =-\frac{\pi i}{2}\left[ \text{sen }\left( w^{2}+3w-1\right)\right] \left( 2w+3\right).
$$
A integral procurada é \(I=I\left( -3/2\right) =0\).

Teorema de Morera

3. Por isto se chama de função analítica a uma função real que possui expansão de Taylor em torno de um ponto \(x_0\) qualquer, o que equivale a dizer que ela possui derivadas de todas as ordens, neste ponto.

Uma função analítica, como vimos, possui derivadas de todas as ordens e suas derivadas são também analíticas3. Por outro lado a integral de uma função analítica, quando integrada sobre um contorno fechado é sempre nula. O teorema seguinte afirma que a recíproca é também verdadeira.

Teorema de Morera: Seja \(f\) uma função contínua em uma região \(R\) satisfazendo \(\oint\nolimits_{C}f\left( z\right) dz=0\) para todo contorno \(C\) em \(R\). Então \(f\) é analítica em \(R\).

Demonstração: Seja\(z_0\) um ponto fixo qualquer de \(R\). A função
$$
F\left( z\right) =\int_{z_0}^{z}f\left( w\right) dw
$$
independe do caminho de integração pois, por hipótese, a integral sobre um caminho fechado é nula. Como no teorema da primitiva, \(F\) é analítica e sua derivada,
$$
\frac{d}{dz}F\left( z\right) =\frac{d}{dz}\int_{z_0}^{z}f\left( w\right)dw=f\left( z\right) ,
$$
é, também, uma funções analítica, o que conclui a demonstração do teorema.

Funções harmônicas

4. Observe que \(\bigtriangledown ^{2}u=\bigtriangledown \cdot \bigtriangledown u=div\left( grad\ u\right)\).

Uma função é chamada de “harmônica” em uma região \(R\) se, nesta região, ela possui derivadas de segunda ordem e satisfaz à equação de Laplace4
$$
\bigtriangledown ^{2}u=\frac{\partial ^{2}u}{\partial x^{2}}+\frac{\partial^{2}v}{\partial x^{2}}=0.
$$
Se \(f\left( z\right) =u\left( x,y\right) +iv\left( x,y\right)\) é analítica em \(R\) então ela possui derivadas de todas as ordens e
$$
\frac{d}{dz}=\frac{\partial }{\partial x}=\frac{\partial }{\partial \left(iy\right) }.
$$
Podemos então derivar as equações de Cauchy-Riemann um número arbitrário de vezes. Derivando uma vez
$$
\left.
\begin{array}{ccc}
u_{x}=v_{y} & \text{(em }x\text{)}\rightarrow & u_{xx}=v_{yx} \\
u_{y}=-v_{x} & \text{(em }y\text{)}\rightarrow & u_{yy}=-v_{xy}
\end{array}
\right\} \Rightarrow u_{xx}+u_{yy}=0,
$$
$$
\left.
\begin{array}{ccc}
u_{x}=v_{y} & \text{(em }y\text{)}\rightarrow & u_{xy}=v_{yy} \\
u_{y}=-v_{x} & \text{(em }x\text{)}\rightarrow & u_{yx}=-v_{xx}
\end{array}
\right\} \Rightarrow v_{xx}+v_{yy}=0,
$$
de onde concluimos que, se \(f\) é analítiva então \(u\left(x,y\right)\) e \(v\left( x,y\right)\) são funções harmônicas.

Uma questão interesssante que segue dai é a seguinte: dada uma função harmônica qualquer ela pode ser considerada parte real ou imaginária de uma função analítica? A resposta é afirmativa, como mostraremos a seguir para o caso geral. Antes disto, porém, vamos mostrar em um exemplo como encontrar a parte imaginária de uma função analítica se conhecemos sua parte real.

Exemplo 8: A função \(u\left( x,y\right)=x^{2}-y^{2}\) é harmônica pois
$$
u_{xx}=2,\ u_{yy}=-2,\ \bigtriangledown ^{2}u=0.
$$
Queremos determinar \(v=\text{Im}\left( f\right)\) de forma que a função \(f=u+iv\) seja analítica. Usando a primeira condição de Cauchy-Riemann
$$
u_{x}=2x=v_{y}
$$
podemos determinar, por integração, que

(7)

$$
v=-\int 2xdy=2xy+h\left( x\right)
$$
onde \(h\) é uma função, por enquanto indeterminada, que só pode depender de \(x\). Para encontrar \(h\) usamos a outra condição
$$
u_{y}=-2x=-v_{x}\Rightarrow v_{x}=2x.
$$
Comparando com a equação (7) obtemos
$$
v_{x}=2y+h^{\prime }
$$
de onde concluimos que \(h^{\prime }=0\) e, portanto \(h=c\), uma constante. A função analítica procurada é
$$
f\left( z\right) =x^{2}-y^{2}+2ixy+c=z^{2}+c.
$$
A função \(v\) é a chamada a harmônica conjugada de \(u\).

O caso geral pode ser tratado da seguinte forma: dada \(u\left( x,y\right)\) uma função harmônica procuramos sua harmônica conjugada, \(v\). Sua diferencial será
$$
dv=v_{x}dx+v_{y}dy=-u_{y}dx+u_{x}dy.
$$
Procuramos \(v\) na forma de
$$
v\left( x,y\right) =v_{0}+\int_{\left( x_{0},y_{0}\right) }^{\left(x,y\right) }-u_{y}dx+u_{x}dy,
$$
onde \(v_{0}=v\left( x_{0},y_{0}\right)\). A função \(v\left(x,y\right)\) está bem definida e possui derivadas contúnuas se a integral independe do caminho, ou seja, se \(-u_{y}dx+u_{x}dy\) é uma diferencial exata. Se isto ocorre então \(\oint -u_{y}dx+u_{x}dy=0\) pois \(\oint dv=0\). Para mostrar que este é exatamente o caso denotamos por \(R^{\prime }\) a região interior ao contorno \(C\) e usamos o teorema de Green
$$
\oint -u_{y}dx+u_{x}dy=\iint\nolimits_{R^{\prime }}\left(u_{xx}+u_{yy}\right) =0
$$
sendo que a última integral é nula porque \(u\) é harmônica.

Exercícios :

Mostre que as funções \(u\) dadas abaixo são harmônicas, encontre suas conjugadas harmônicas e as funções analíticas \(f=u+iv\).
$$
\begin{array}{ll}
\text{1.} \; u=x-5xy \;\; & \text{2.} \; u=x-4xy \\
\text{3.}\; u=\text{sen }x \cosh y \;\;\;\; & \text{4.} \; u=x^{3}-3xy^{2}
\end{array}
$$

Algumas respostas:

1. \(f(z)=z+5iz^{2}/2+c,\) 3. \( v=\cos x\text{ senh }y+c, \;\; f(z) =\text{sen }z+ic\).

2 – Funções Analíticas

Funções de uma variável complexa

Uma função \(f:\mathbb{C}\rightarrow \mathbb{C}\) é uma operação que transforma pontos do plano complexo em outros pontos. A cada função de uma variável complexa
$$
w=f\left( z\right) =u\left( x,y\right) +i\left( x,y\right)
$$
estão associadas duas funções reais: \(u\left( x,y\right) =\text{Re}f\left( z\right) \;\text{ e }\; v(x,y)=\text{Im}f\left( z\right)\). Como estas funções levam pontos do plano \(\mathbb{C}\) em pontos de \(\mathbb{C}\) há uma dificuldade natural em se visualizar geometricamente seu efeito. Em algumas situações é útil visualizar funções complexas como transformações. Neste caso se observa como um determinado conjunto de pontos de \(\mathbb{C}\) é levado no próprio \(\mathbb{C}\) pela função.

Exemplo 1: O valor absoluto é uma função que tem como argumento números complexos e retorna números reais: \(\;f:\mathbb{C}\rightarrow \mathbb{R}\). Representaremos esta função por \(\;f(z) = \left\vert z \right\vert\) e a definimos como
$$
w=f\left( z\right) =\left\vert z\right\vert =\sqrt{x^{2}+y^{2}}.
$$
A imagem desta função é \(\mathbb{R}^{+}\).

Exemplo 2: A função
$$
w=f\left( z\right) =\frac{2z-3i}{\left( z-2\right) \left( z+i\right) }
$$
é válida para todos os pontos de \(\mathbb{C}\), exceto \(z=2\) e \(z=-i\). Seu domínio é, portanto, \(D\left(f\right) =\mathbb{C}-\left\{ 2\right\} -\left\{ -i\right\}\).

Exercício Resolvido: Encontre as partes real e imaginária da função
$$
w=\frac{3}{z-5}.
$$
Em coordenadas cartesianas temos
$$
w=\frac{3}{x-5+iy}=\frac{3\left( x-5-iy\right) }{\left( x-5\right) ^{2}+y^{2}}=\frac{3x-15-3iy}{\left( x-5\right) ^{2}+y^{2}}.
$$
Portanto
$$
u\left( x,y\right) = \frac{3x-15}{\left( x-5\right) ^{2}+y^{2}} \;\;\;\;\text{ e }\;\;\;\; v\left( x,y\right) =\frac{3y}{\left( x-5\right) ^{2}+y^{2}}
$$
são as partes real e imaginária, respectivamente.

Limites e Continuidade

Algumas definições são necessárias para prosseguirmos nosso estudo.

Definição: Se \(z_{0}\) é um ponto de acumulação do domínio \(D\) de uma função \(f\) então
$$
\lim_{z\rightarrow z_{0}}f\left( z\right) =L
$$
se, dado qualquer \(\epsilon >0\) existe um \(\delta >0\) tal que
$$
z\in D,\;0<\left\vert z-z_{0}\right\vert <\delta \Rightarrow \left\vert f\left( z\right) -L\right\vert <\epsilon .
$$
Equivalentemente:
$$
z\in D\cap V_{\delta }\left( z_{0}\right) \Rightarrow f\left( z\right) \in V_{\varepsilon }\left( L\right).
$$

Definição: Se \(\lim_{z\rightarrow z_{0}}f\left( z\right) =f\left( z_{0}\right)\) então \(f\) é contínua em \(z_{0}\).

Teorema: Seja \(f=u+iv\) e \(L=U+iV\). Então
$$
\lim_{z\rightarrow z_{0}}f\left( z\right) =L\Longleftrightarrow \lim_{z\rightarrow z_{0}}u=U\text{ }\;\;\;\;\;\text{ e }\;\;\;\;\lim_{z\rightarrow z_{0}}v=V.
$$

Corolário: Uma função \(f\left(z\right) =u\left( x,y\right) +iv\left( x,y\right)\) é contínua se, e somente se, as funções \(u\) e \(v\) são contínuas.

Teorema: Se \(\lim_{z\rightarrow z_{0}}f\left( z\right) =F\) e \(\lim_{z\rightarrow z_{0}}g\left( z\right) =G\) então

(a) \(\lim_{z\rightarrow z_{0}}\left[ f\left( z\right) +g(z)\right] =F+G\)(b) \(\lim_{z\rightarrow z_{0}}\left[ f\left( z\right).g(z)\right] =F.G\)

(c) \(\lim_{z\rightarrow z_{0}}\left[ f\left( z\right) /g(z)\right] =F/G\), se \(G\neq 0\).

Teorema: Se \(\lim_{z\rightarrow z_{0}}f\left( z\right) =F\) então existe uma vizinhança \(V_{\delta }\left( z_{0}\right)\) onde \(f\left(z\right)\) é limitada.

Teorema: A soma e o produto de funções contínuas são contínuas. O quociente é contínuo se o denominador não se anula.

Analiticidade

Diferente do que acontece com as funções de uma variável real, quando se analisa o comportamento de uma função de uma variável complexa na vizinhança de um ponto \(z_{0}\) é necessário considerar os diferentes caminhos tomados para se chegar a \(z_{0}\) no plano complexo. De modo análogo ao que ocorre com funções de duas variáveis reais, diremos que uma função \(f:D\rightarrow \mathbb{C}\) é derivável em \(z_{0}\) se sua derivada não depende do caminho tomado para se chegar a \(z_{0}\).

Definição: Uma função \(f:D\rightarrow \mathbb{C}\) é derivável em \(z\in D\) se existe o limite
$$
\lim_{\Delta z\rightarrow 0}\frac{f\left( z+\Delta z\right) -f\left(
z\right) }{\Delta z}\equiv f^{\prime }\left( z\right).
$$
Este limite deve ser único, não podendo depender de como \(z+\Delta z\) se aproxima de \(z\) ou, equivalentemente, de como \(\Delta z\rightarrow 0\).

Exemplo 3: A função \(f\left( z\right) =\left\vert z\right\vert ^{2}\) não é derivável em nenhum ponto de \(\mathbb{C}\). Para ver isto fazemos \(f\left( z\right) =\left\vert z\right\vert ^{2}=z \bar{z}\) e, usando a definição,
$$
f^{\prime }\left( z\right) =\lim_{\Delta z\rightarrow 0}\frac{\left(
z+\Delta z\right) \left( \bar{z}+\Delta \bar{z}\right) -z\bar{z}}{\Delta z}
=\lim_{\Delta z\rightarrow 0}\frac{z\Delta \bar{z}}{\Delta z}+\Delta \bar{z}+
\bar{z}.
$$
Escrevendo o incremento em forma polar,
$$
\Delta z=re^{i\theta };\ \Delta \bar{z}=re^{-i\theta },
$$
e lembrando que \(\Delta z\rightarrow 0\) equivale a \(r\rightarrow 0\) temos que
$$
f^{\prime }\left( z\right) =\lim_{r\rightarrow 0}\ \left( ze^{-2i\theta
}+re^{-i\theta }+\bar{z}\right) =ze^{-2i\theta }+\bar{z}.
$$
Observe que este limite depende do ângulo \(\theta\) com que se aproxima de \(z\) e, portanto, o limite não é único. Dizemos que esta função só tem derivada no ponto \(z=0\) e, neste ponto, \(f^{\prime}\left( 0\right) =0\).

Definição: Uma função \(f:D\rightarrow \mathbb{C}\) é analítica em uma região \(R\) se é derivável em cada ponto de \(R\). \(f\) é analítica no ponto \(z_{0}\) se é analítica numa vizinhança \(V_{\delta }\left( z_{0}\right)\). Uma função é dita inteira se for analítica em todo o plano complexo. As expressões holomorfa ou regular são também empregadas.

Regras de derivação

As funções elementares, extendidas para o plano complexo, são analíticas. Veremos alguns exemplos simples deste fato.

Exemplo 4: A função contínua \(f\left( z\right)=z_0\;\) (uma constante) é analítica e sua derivada é nula em todo ponto.

Exemplo 5: Se \(f\left( z\right) =z^{2}\) então
$$
f^{\prime }\left( z\right) =\lim_{\Delta z\rightarrow 0}\frac{f\left(
z+\Delta z\right) -f\left( z\right) }{\Delta z}=\lim_{\Delta z\rightarrow 0}
\frac{\left( z+\Delta z\right) ^{2}-z^{2}}{\Delta z}=
$$
$$
= \lim_{\Delta z\rightarrow 0}\frac{2z\Delta z+\Delta z^{2}}{\Delta z}==\lim_{\Delta z\rightarrow 0}2z+\Delta z=2z.
$$
Observe que este limite não depende de como \(\Delta z\rightarrow 0\). Usando o binômio de Newton podemos generalizar este resultado para funções \(f\left( z\right) =z^{n}\), cujas derivadas são
$$
f^{\prime }\left( z\right) =nz^{n-1}.
$$

Observamos que a soma e o produto de funções analíticas são analíticas. O quociente é analítico se o denominador for não-nulo. As seguintes regras se aplicam:

a. \(\left(f+g\right)^{\prime}=f^{\prime}+g^{\prime }\)
b. \(\left(fg\right)^{\prime}=f^{\prime}g+fg^{\prime }\)
c. \(\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime}g-fg^{\prime }}{g^{2}},\;\;\text{ se }\;\;g\neq 0\).

Além disto temos um resultado importante: se \(f\) é uma função derivável em \(z_{0}\) então ela é contínua neste ponto. Para ver isto notamos que
$$
f^{\prime }\left( z_{0}\right) =\lim_{z\rightarrow z_{0}}\frac{f\left(z\right) -f\left( z_{0}\right) }{z-z_{0}}.
$$
Definimos

(1)

$$
g\left( z\right) =\frac{f\left( z\right) -f\left( z_{0}\right) }{z-z_{0}}-f^{\prime }\left( z_{0}\right)
$$
e, portanto,
$$
\lim_{z\rightarrow z_{0}}g\left( z\right) =0.
$$
De (1) podemos escrever
$$
f\left( z\right) =f\left( z_{0}\right) +\left( z-z_{0}\right) g\left(z\right) +\left( z-z_{0}\right) f^{\prime }\left( z_{0}\right)
$$
e, desta última expressão
$$
\lim_{z\rightarrow z_{0}}f\left( z\right) =f\left( z_{0}\right).
$$
Logo ela é contínua.

Exemplo 6: A função
$$
f\left( z\right) =\frac{\left( z+i\right) \left( 3z+1\right) ^{2}}{z\left(z-i\right) \left( z+2\right) ^{2}}
$$
só deixa de ser analítica nos pontos \(z=0\), \(z=i\) e \(z=-2\).

Condições de Cauchy-Riemann

Seja \(f\left( z\right) =u+iv\) uma função derivável em \(z=x+iy\). Então o limite
$$
\lim_{\Delta z\rightarrow 0}\frac{f\left( z-\Delta z\right) -f\left(
z\right) }{\Delta z}=f^{\prime }\left( z\right)
$$
existe e independe de como \(\Delta z\rightarrow 0\). Tomamos em particular dois caminhos. Fazendo \(\Delta z=k\), que corresponde a \(z\) se aproximando de \(z_{0}\) ao longo do eixo real, temos
$$
f^{\prime }\left( z\right) =\lim_{k\rightarrow 0}\frac{1}{k}\left[ u\left(
x+k,y\right) +iv\left( x+k,y\right) -u\left( x,y\right) -iv\left( x,y\right)
\right]
$$
$$
=\lim_{k\rightarrow 0}\frac{1}{k}\left[ u\left( x+k,y\right) -u\left(
x,y\right) +iv\left( x+k,y\right) -iv\left( x,y\right) \right] =
$$
$$
=\frac{\partial u\left( x,y\right) }{\partial x}+i\frac{\partial v\left(
x,y\right) }{\partial x}.
$$
Por outro lado, fazendo \(\Delta z=it\), o que corresponde a tomar \(z\) se aproximando de \(z_{0}\) ao longo do eixo imaginário, temos
$$
f^{\prime }\left( z\right) =\lim_{t\rightarrow 0}\frac{1}{it}\left[ u\left(x,y+t\right) +iv\left( x,y+t\right) -u\left( x,y\right) -iv\left( x,y\right)
\right].
$$
Para explicitar as partes real e imaginária deste limite multiplicamos numerador e denominador por \(-i\),
$$
f^{\prime }\left( z\right) =\lim_{t\rightarrow 0}\frac{1}{t}\left[ v\left(x,y+t\right) -v\left( x,y\right) -iu\left( x,y+t\right) +iu\left( x,y\right) \right] =
$$
$$
=\frac{\partial v\left( x,y\right) }{\partial y}-i\frac{\partial u\left(x,y\right) }{\partial y}.
$$
Para que a função seja derivável os limites tomados para os dois casos devem ser iguais. Identificando as partes reais e imaginárias chegamos às equações de Cauchy-Riemann:
$$
\frac{\partial u\left( x,y\right) }{\partial x}=\frac{\partial v\left(x,y\right) }{\partial y};
$$
$$
\frac{\partial u\left( x,y\right) }{\partial y}=-\frac{\partial v\left(x,y\right) }{\partial x}.
$$
Para simplificar a notação faremos
$$
\frac{\partial u}{\partial x}=u_{x};\;\ \frac{\partial v}{\partial y}=v_{y};\ \;\frac{\partial u}{\partial y}=u_{y};\ \;\frac{\partial v}{\partial x}=v_{x},
$$
de forma que as equações de Cauchy-Riemann podem ser escritas simplesmente como
$$
u_{x}=v_{y};\;\;\ \;u_{y}=-v_{x}.
$$
Estas condições, no entanto, são necessárias mas não suficientes para que \(f=u+iv\) seja uma função analítica. O seguinte teorema exibe as condições para que isto seja verdadeiro.

Teorema: Sejam \(u\left( x,y\right)\) e \(v\left(x,y\right)\) funções reais com derivadas parciais contínuas numa região \(R\). Então as equações de Cauchy-Riemann são condições necessárias e suficientes para que \(f=u+iv\) seja analítica.

Observe que, para uma função analítica, podemos tomar\ \(\Delta z\rightarrow 0\) ao longo de qualquer caminho, em particular podemos fazer \(\Delta z=\Delta x\), como fizemos na derivação das equações de Cauchy-Riemann. Sua derivada é, portanto
$$
\frac{df\left( z\right) }{dz}=\frac{\partial f\left( z\right) }{\partial x}.
\label{dparc}
$$
Se for conveniente podemos também usar a derivada parcial em \(y\).

Exemplo 8: A função \(f\left( z\right) =\bar{z}\) não é analítica. Note que \(\bar{z}=x-iy\). Dai
$$
u\left( x,y\right) =x,\; v\left( x,y\right) =-y,\; u_{x}=1,\; v_{x}=0,\; u_{y}=0,v_{y}=-1.
$$

Exemplo 9: Como já sabemos a função \(f\left(z\right) =z^{2}\) é analítica. Observe que, em coordenadas cartesianas,
$$
f\left( z\right) =\left( x+iy\right) ^{2}=x^{2}-y^{2}+2xyi.
$$
Suas partes real e imaginária são
$$
u\left( x,y\right) =x^{2}-y^{2};\ \ v\left( x,y\right) =2xy
$$
e suas derivadas parciais

(2)

$$
\begin{array}{ll}
\frac{\partial u}{\partial x}=2x, & \frac{\partial v}{\partial y}=2x \\
\frac{\partial u}{\partial y}=-2y,\ \ \ \ & \frac{\partial v}{
\partial x}=2y.
\end{array}
$$
Como \(u_{x}=v_{y}\), \(\ u_{y}=-v_{x}\) e as derivadas parciais são contínuas então a função é analítica. Sua derivada é, usando (2),
$$
\frac{dz^{2}}{dz}=\frac{\partial z^{2}}{\partial x}=u_{x}+iv_{x}=2x+2iy=2z.
$$

Exemplo 10: Vamos verificar que se a função \(f\left(z\right) =1/z\) é analítica e encontrar sua derivada. Precisamos primeiro escrever a função de forma a explicitar sua parte real e imaginária,
$$
f\left( z\right) =\frac{1}{z}=\frac{1}{x+iy}=\frac{1}{x+iy}\frac{x-iy}{x-iy}=
\frac{x-iy}{x^{2}+y^{2}}.
$$
Portanto
$$
u\left( x,y\right) =\frac{x}{x^{2}+y^{2}},\;\;\;v\left( x,y\right) =\frac{-y}{x^{2}+y^{2}}.
$$
Lembrando que a derivada de um quociente é
$$
\left( \frac{f}{g}\right) ^{\prime }=\frac{f^{\prime }g-fg^{\prime }}{g^{2}}
$$
calculamos
$$
u_{x}=\frac{x^{2}+y^{2}-x\left( 2x\right) }{\left( x^{2}+y^{2}\right) ^{2}}=
\frac{y^{2}-x^{2}}{\left( x^{2}+y^{2}\right) ^{2}},
$$
$$
u_{y}=\partial _{y}\left[ x\left( x^{2}+y^{2}\right) ^{-1}\right] =\frac{-2xy}{\left( x^{2}+y^{2}\right) ^{2}},
$$
$$
v_{x}=\partial _{x}\left[ -y\left( x^{2}+y^{2}\right) ^{-1}\right] =\frac{2xy}{\left( x^{2}+y^{2}\right) ^{2}},
$$
$$
v_{y}=-\frac{x^{2}-y^{2}}{\left( x^{2}+y^{2}\right) ^{2}}=\frac{y^{2}-x^{2}}{\left( x^{2}+y^{2}\right) ^{2}}.
$$
Observamos que as equações de Cauchy-Riemann, \(u_{x}=v_{y},\;u_{y}=-v_{x},\;\) são satisfeitas em todo o plano complexo. No entanto as derivadas parciais de \(u\) e \(v\) não são contínuas em \(\left(x,y\right) =\left( 0,0\right)\) de onde concluímos que \(f\left(z\right)\) é analítica em \(\mathbb{C}-\left\{ 0\right\}\). Fora de \(z=0\) a função é analítica e podemos usar (2) para obter sua derivada:
$$
\frac{d}{dz}\left( \frac{1}{z}\right) =\frac{\partial }{\partial x}\left(\frac{1}{z}\right) =\frac{\partial }
{\partial x}\left( \frac{x-iy}{x^{2}+y^{2}}\right) =-\frac{1}{z^{2}}.
$$
Obtenha, como um exercício, a última igualdade.

Exercício Resolvido: Verifique se são analíticas e em que região são analíticas as funções:

a. \(f(z)=e^z\)   b. \(f(z) =z\bar{z}\)   c. \(f(z) =1\)

Encontre as derivadas das funções, quando existirem.

a. A função exponencial pode ser escrita como
$$
f\left( z\right) =e^{z}=e^{x+iy}=e^{x}e^{iy}=e^{x}\left( \cos y+i\text{sen }y\right).
$$
Portanto
$$
u\left( x,y\right) =e^{x}\cos y\;\;\;\Rightarrow \;\;\;u_{x}=e^{x}\cos y,\;\;\;u_{y}=-e^{x}\text{sen }y
$$
$$
v\left( x,y\right) =e^{x}\text{sen }y\;\;\;\Rightarrow \;\;v_{x}=e^{x}\text{sen }y,\;\;\;v_{y}=e^{x}\cos y.
$$
Como as condições de Cauchy Riemann são satisfeitas e as derivadas parciais são contínuas a função é analítica em todo o plano complexo. Além disto sua derivada é
$$
\frac{d\,e^{z}}{dz}=\frac{\partial \,e^{z}}{\partial x}=u_{x}+iv_{x}=e^{x}\cos y+ie^{x}\text{sen }y=e^{x}e^{iy}=e^{z}.
$$

b. A função \(f\left( z\right) =z\bar{z}=(x+iy)\left( x-iy\right)=x^{2}+y^{2}\) só é analítica em \(z=0\) pois
$$
u\left( x,y\right) =x^{2}+y^{2}\;\;\;\Rightarrow \;\;\;u_{x}=2x,\;\;\;u_{y}=2y
$$
$$
v\left( x,y\right) =0\;\;\;\Rightarrow \;\;v_{x}=0,\;\;\;v_{y}=0.
$$

c. Já a função constante \(f\left( z\right) =1\) é analítica em \(\mathbb{C}\) pois \(u=1,\;v=0\), e todas as derivadas são nulas, portanto contínuas. Sua derivada é
$$
\frac{d\,1}{dz}=\frac{\partial \,1}{\partial x}=0.
$$

Equações de Cauchy-Riemann em coordenadas polares

Algumas vezes é mais fácil trabalhar com as funções em coordenadas polares para testar sua analiticidade. Para obter as equações de Cauchy-Riemann nestas coordenadas partimos das relações entre as coordenadas polares e as coordenadas cartesianas,
$$
r\left( x,y\right) =\sqrt{x^{2}+y^{2}};\;\;\theta \left( x,y\right) =\arctan\left( \frac{y}{x}\right)
$$
ou, inversamente,
$$
x=r\cos \theta ,\ \ y=r\text{sen }\theta .
$$
Se \(f\) é uma função de \(x\) e \(y\), que, por sua vez, são funções de \(r\) e \(\theta\),
$$
f=f\left( x\left( r,\; \theta \right) ,\;\; y\left( r,\; \theta \right) \right)
$$
podemos relacionar as derivadas parciais calculadas nos dois sistemas de coordenadas por meio da regra da cadeia:
$$
\frac{\partial f}{\partial r}=\frac{\partial f}{\partial x}\frac{\partial x}{
\partial r}+\frac{\partial f}{\partial y}\frac{\partial y}{\partial r},
$$
$$
\frac{\partial f}{\partial \theta }=\frac{\partial f}{\partial x}\frac{
\partial x}{\partial \theta }+\frac{\partial f}{\partial y}\frac{\partial y}{
\partial \theta }.
$$
Como estas duas relações são válidas independentemente da função \(f\) considerada podemos escrever as relações de operadores,
$$
\frac{\partial }{\partial r}=\frac{\partial }{\partial x}\frac{\partial x}{
\partial r}+\frac{\partial }{\partial y}\frac{\partial y}{\partial r},
$$
$$
\frac{\partial }{\partial \theta }=\frac{\partial }{\partial x}\frac{
\partial x}{\partial \theta }+\frac{\partial }{\partial y}\frac{\partial y}{
\partial \theta }.
$$
Precisaremos das derivadas
$$
\begin{array}{ll}
x_{r}=\cos \theta , & y_{r}=\text{sen }\theta , \\
x_{\theta }=-r\text{sen }\theta ,\ \ \ & y_{\theta }=r\cos \theta .
\end{array}
$$
Então
$$
\frac{\partial }{\partial r}=\cos \theta \frac{\partial }{\partial x}+\text{
sen}\theta \frac{\partial }{\partial y},\; \; \; \; \frac{\partial }{
\partial \theta }=-r\text{sen }\theta \frac{\partial }{\partial x}+r\cos
\theta \frac{\partial }{\partial y}.
$$
Em particular
$$
\begin{array}{ll}
u_{r}=\cos \theta ~u_{x}+\text{sen }\theta ~u_{y}, & v_{r}=\cos \theta ~v_{x}+
\text{sen }\theta ~v_{y}, \\
u_{\theta }=-r\text{sen }\theta ~u_{x}+r\cos \theta ~u_{y},\; \; \; \; &
v_{\theta }=-r\text{sen }\theta ~v_{x}+r\cos \theta ~v_{y}.
\end{array}
$$
Usando as equações de Cauchy-Riemann em coordenadas cartesianas (\(u_{x}=v_{y}\) e \(u_{y}=-v_{x}\) ) podemos escrever
$$
\begin{array}{ll}
u_{r}=\cos \theta & v_{y}-\text{sen }\theta ~v_{x}=\frac{1}{r}v_{\theta }, \\
u_{\theta }=-r\text{sen }\theta & v_{y}-r\cos \theta ~v_{x}=-rv_{r}.
\end{array}
$$
Estas são, portanto, as equações de Cauchy-Riemann em coordenadas polares:
$$
\frac{\partial u}{\partial r}=\frac{1}{r}\frac{\partial v}{\partial \theta },
$$
$$
\frac{\partial v}{\partial r}=-\frac{1}{r}\frac{\partial u}{\partial \theta}.
$$
Observe que, se a função é analítica, sua derivada é
$$
\frac{df\left( z\right) }{dz}=\frac{\partial f\left( z\right) }{\partial x}.
$$
A derivada parcial em \(x\) pode ser associada às derivadas em \(r\) e \(\theta\) da seguinte forma: primeiro calculamos as derivadas parciais
$$
\frac{\partial r}{\partial x}=\frac{\partial }{\partial x}\sqrt{x^{2}+y^{2}}=\frac{x}{\sqrt{x^{2}+y^{2}}}=\frac{x}{r}=\cos \theta,
$$
$$
\frac{\partial \theta }{\partial x}=\frac{\partial }{\partial x}\text{arctag } \left( \frac{y}{x}\right) =\frac{1}{1+\left( y/x\right) ^{2}}\frac{-y}{x^{2}}
=\frac{-y}{x^{2}+y^{2}}=\frac{-\text{sen }\theta }{r}.
$$
Em seguida, usando a regra da cadeia, temos
$$
\frac{\partial }{\partial x}=\frac{\partial }{\partial r}\frac{\partial r}{
\partial x}+\frac{\partial }{\partial \theta }\frac{\partial \theta }{
\partial x}=\cos \theta \frac{\partial }{\partial r}-\frac{\text{sen }\theta
}{r}\frac{\partial }{\partial \theta }
$$
portanto
$$
\frac{df\left( z\right) }{dz}=\cos \theta \frac{\partial f\left( z\right) }{
\partial r}-\frac{\text{sen }\theta }{r}\frac{\partial f\left( z\right) }{
\partial \theta }.
$$
Apenas como referência vamos listar a derivada parcial em \(y:\)
$$
\frac{\partial }{\partial y}=\frac{\partial }{\partial r}\frac{\partial r}{
\partial y}+\frac{\partial }{\partial \theta }\frac{\partial \theta }{
\partial y}=\text{sen }\theta \frac{\partial }{\partial r}+\frac{\cos \theta
}{r}\frac{\partial }{\partial \theta },
$$
enquanto \(r\) e \(\theta\) tem derivadas em \(y\)
$$
\frac{\partial r}{\partial y}=\frac{\partial }{\partial y}\sqrt{x^{2}+y^{2}}=
\frac{y}{\sqrt{x^{2}+y^{2}}}=\frac{r\text{sen }\theta }{r^{2}}=\text{sen }
\theta ,
$$
$$
\frac{\partial \theta }{\partial y}=\frac{\partial }{\partial y}\text{arctag}
\left( \frac{y}{x}\right) =\frac{1}{1+\left( y/x\right) ^{2}}\frac{1}{x}=
\frac{x}{x^{2}+y^{2}}=\frac{\cos \theta }{r}.
$$

Exemplo 11: Vamos verificar se a função \(f\left(z\right) =1/z\) é analítica. Já resolvemos este exercício em coordenadas cartesianas mas vale notar que a verificação fica mais simples em coordenadas polares. Para isto escrevemos

$$
f\left( z\right) =\frac{1}{z}=\frac{1}{re^{i\theta }}=\frac{e^{-i\theta }}{r}
=\frac{1}{r}\left( \cos \theta -i\text{sen }\theta \right).
$$
Portanto
$$
u\left( r,\theta \right) =\frac{1}{r}\cos \theta ,\;\;\;v\left( r,\theta
\right) =-\frac{1}{r}\text{sen }\theta .
$$
Calculamos agora
$$
u_{r}=-\frac{1}{r^{2}}\cos \theta ,\;\;\;\;\;u_{\theta }=-\frac{1}{r}
\text{sen }\theta ,
$$
$$
v_{r}=\frac{1}{r^{2}}\text{sen }\theta, \;\;\;\;\;\;v_{\theta }=-\frac{1}{r}\cos \theta.
$$
portanto \(u_{r}=\frac{1}{r}v_{\theta },\;v_{r}=-\frac{1}{r}u_{\theta }\), as equações de Cauchy-Riemann são satisfeitas. No entanto as derivadas parciais não são contínuas em \(r=0\) logo \(f\left(z\right)\) não é analítica em \(z=0,\;\) como já havíamos concluído usando a representação em coordenadas cartesianas.

Exemplo 12: Verifique se a função \(f\left( z\right) =1/z^{2}\) é analítica. Escrevemos a função em coordenadas polares,

$$
f\left( z\right) =\frac{1}{z^{2}}=\frac{1}{r^{2}e^{2i\theta }}=\frac{
e^{-2i\theta }}{r^{2}}=\frac{1}{r^{2}}\left( \cos 2\theta -i\text{sen }
2\theta \right).
$$
Portanto
$$
u\left( r,\theta \right) =\frac{1}{r^{2}}\cos 2\theta ,\;\;\;v\left(
r,\theta \right) =-\frac{1}{r^{2}}\text{sen }2\theta .
$$
As derivadas parciais de \(u\) e \(v\), em coordenadas polares, são
$$
u_{r}=-\frac{2}{r^{3}}\cos 2\theta ,\;\;\;\;\;u_{\theta }=-\frac{2}{r^{2}}\text{sen }2\theta ,
$$
$$
v_{r}=\frac{2}{r^{3}}\text{sen }2\theta ;\;\;\;\;\;\;v_{\theta }=-\frac{2}{
r^{2}}\cos 2\theta .
$$
portanto \(u_{r}=\frac{1}{r}v_{\theta },\;v_{r}=-\frac{1}{r}u_{\theta }\). As derivadas parciais não são contínuas em \(r=0\;\;\) logo \(f\left(z\right)\) não é analítica em \(r=0\).

Exercício Resolvido: Verifique se são analíticas e em que região são analíticas:
a. \(f\left( z\right) =\frac{1}{z^{3}},\;\;\;\)b.\( \; f\left( z\right) =\sqrt{z}\).

Para estas funções é mais fácil fazer o teste em coordenadas polares.

a. Escrevemos \(z=re^{i\theta }\), logo
$$
f\left( z\right) =\frac{1}{z^{3}}=\frac{1}{r^{3}e^{3\theta i}} =r^{-3}\left( \cos 3\theta -i\text{sen }3\theta \right).
$$
Foi usado aqui
$$
\frac{1}{e^{3\theta i}}=e^{-3\theta i}=\cos \left( -3\theta \right) +i \text{sen }\left( -3\theta \right) =\cos 3\theta -i\text{sen }3\theta ,
$$
pois o cosseno é uma função par enquanto o seno é impar. Temos então
$$
u=r^{-3}\cos 3\theta \;\;\;\Rightarrow \;\;\;u_{r}=-3r^{-4}\cos 3\theta ,\;\;\;u_{\theta }=-3r^{-3}\text{sen }3\theta
$$
$$
v=-r^{-3}\text{sen }3\theta \;\;\;\Rightarrow \;\;v_{r}=3r^{-4}\text{sen }3\theta ,\;\;\;v_{\theta }=-3r^{-3}\cos 3\theta .
$$
Então a função é analítica, exceto em \(z=0\), onde as derivadas parciais não são contínuas. Observe que neste ponto a função nem mesmo está definida.

b. Escrevemos \(z=re^{i\theta }\) e tomamos uma de suas raízes, observando que o mesmo resultado seria obtido com a outra raiz,
$$
f\left( z\right) =\sqrt{z}=\sqrt{re^{i\theta }}=\sqrt{r}e^{i\theta /2}=\sqrt{r}\left( \cos \frac{\theta }{2}+i\text{sen }\frac{\theta }{2}\right).
$$
Temos então
$$
u=\sqrt{r}\cos \frac{\theta }{2}\;\;\;\Rightarrow \;\;\;u_{r}=\frac{1}{2\sqrt{r}}\cos \frac{\theta }{2},\;\;\;u_{\theta }=-\frac{\sqrt{r}}{2}\text{
sen}\frac{\theta }{2},
$$
$$
v=\sqrt{r}\text{sen }\frac{\theta }{2}\;\;\;\Rightarrow \;\;v_{r}=\frac{1}{2
\sqrt{r}}\text{sen }\frac{\theta }{2},\;\;\;v_{\theta }=\frac{\sqrt{r}}{2}
\cos \frac{\theta }{2}.
$$
Então a função é analítica exceto em \(z=0\). Note que a função está definida em \(z=0\) mas suas derivadas parciais, \(u_{r}\) e \(v_{r}\), não são contínuas neste ponto.

Exercício Resolvido: Verifique se é analítica a função logaritmo, \(f\left( z\right) =\ln z=\ln \left(re^{i\theta }\right)\).

Observe que o logaritmo, que voltaremos a estudar ainda neste capítulo, pode ser escrito da seguinte forma, usando a propriedade \(\ln \left(ab\right) =\ln a+\ln b:\)
$$
\ln z=\ln \left( re^{i\theta }\right) =\ln r+\ln e^{i\theta }=\ln r+i\theta ,
$$
para \(0\leq \theta \leq 2\pi\). Nesta região temos
$$
u\left( r,\theta \right) =\ln r,\ \ v\left( r,\theta \right) =\theta .
$$
As derivadas parciais são
$$
\begin{array}{lll}
u_{r}=\frac{1}{r}, & & v_{\theta }=0, \\
v_{r}=0, & & v_{\theta }=1,
\end{array}
$$
e, portanto a função é analítica em todo o plano complexo exceto na origem, onde \(u_{r}\) não é contínua.

Interpretação geométrica da analiticidade

Para o estudo que se segue será útil fazer uma revisão dos conceitos de curva de nível e gradiente. Dada uma função de duas variáveis, \(z=u\left( x,y\right)\), então \(u\left( x,y\right) =k\), uma constante, formam famílias de curvas em \(\mathbb{R}^{2}\), cada curva correspondendo a um valor da constante \(k\). Estas são as chamadas curvas de nível de \(u\) consistindo no conjunto de pontos de \(\mathbb{R}^{2}\) que são levados no mesmo valor \(k\) pela função \(u\). Definimos o gradiente de \(u\) como o vetor
$$
\text{grad}u=\vec{\bigtriangledown}u=\left( \frac{\partial u}{\partial x},~
\frac{\partial u}{\partial y}\right)
$$
e observamos que o gradiente é perpendicular a um vetor tangente às curvas de nível, como ilustrado na figura. Para ver isto note que, sobre as curvas de nível, temos \(u\left( x,y\right) =k\) e portanto
$$
0=du=\frac{\partial u}{\partial x}dx+\frac{\partial u}{\partial y}dy=\left(
\frac{\partial u}{\partial x},~\frac{\partial u}{\partial y}\right) \cdot
\left( dx,~dy\right).
$$
Em outros termos temos
$$
\vec{\bigtriangledown}u\cdot d\vec{x}=0\Rightarrow \vec{\bigtriangledown} u\bot d\vec{x}.
$$

Podemos agora enunciar o seguinte teorema:

Teorema: Se a função \(f=u+iv\) é analítica em uma região \(R\) então as curvas de nível das famílias \(u\left( x,y\right) = \; \text{ constante e } \; v\left( x,y\right) =\) constante se cruzam em ângulo reto (são ortogonais) em todo ponto \(z_{0}\in R\) satisfazendo \(\;f^{\prime }\left( z_{0}\right) \neq 0\).

Demonstração: \(\text{grad}u=\vec{\bigtriangledown} u=\left( u_{x},~u_{y}\right)\) é normal às curvas \(u=\) cte enquanto \(\vec{\bigtriangledown}v=\left( v_{x},~v_{y}\right)\) é normal às curvas \(v=\) cte. Tomamos o produto escalar
$$
\vec{\bigtriangledown}u\cdot \vec{\bigtriangledown}v=\left(
u_{x},~u_{y}\right) \cdot \left( v_{x},~v_{y}\right) =u_{x}v_{x}+u_{y}v_{y}.
$$
Usando as condições de Cauchy-Riemann para a analiticade de \(f\) temos
$$
\vec{\bigtriangledown}u\cdot \vec{\bigtriangledown}v=-u_{x}u_{y}+u_{y}u_{x}=0,
$$
de onde concluímos que \(\vec{\bigtriangledown}u\bot \vec{\bigtriangledown}v\).

Observe que estas curvas, \(u\) e \(v\) constante, são curvas no domínio da função no plano complexo, representado pelas coordenadas \(z=x+iy\) como ilustrado na figura. As curvas \(u\) e \(v\) constante na imagem, \(w=f\left( z\right)\) são perpendiculares por definição.

Exemplo 13: Vamos verificar a perpendicularidade estudada acima para a função
$$
w=z^{2}=x^{2}-y^{2}+2ixy.
$$
As curvas \(u\left( x,y\right) =k\) são as hipérboles
$$
x^{2}-y^{2}=k_{1}\Rightarrow \frac{x^{2}}{k_{1}}-\frac{y^{2}}{k_{1}}=1,
$$
enquanto \(v\left( x,y\right) =k\) são também hipérboles, dadas por
$$
2xy=k_{2}\Rightarrow y=\frac{k_{2}}{2x}.
$$
Algumas vezes é útil considerar o último teorema sob a seguinte
forma:

Teorema: Se a função \(f=u+iv\) é analítica em uma região \(R\) então as famílias de curvas

$$
\begin{array}{ll}
F_{1}: & u\left( x,y_{0}\right) +iv\left( x,y_{0}\right) , \\
F_{2}: & u\left( x_{0},y\right) +iv\left( x_{0},y\right) ,
\end{array}
$$

parametrizadas por \(x\) e \(y\) respectivamente, são ortogonais em \(z_{0}\in R\), desde que \(f^{\prime }\left( z_{0}\right) \neq 0\).

Demonstração: Em forma vetorial as famílias \(F_{1}\) e \(F_{2}\) e suas respectivas tangentes, \(t_{1}\) e \(t_{2}\), são
$$
\begin{array}{ll}
F_{1}=\left( u\left( x,y_{0}\right) ,\ v\left( x,y_{0}\right) \right) ;\ &
t_{1}=\frac{\partial F_{1}}{\partial x}=\left. \left( u_{x},~v_{x}\right)
\right\vert _{\left( x_{0},y_{0}\right) },\; \; \\
F_{2}=\left( u\left( x_{0},y\right) ,~v\left( x_{0},y\right) \right) ;\ &
t_{2}=\frac{\partial F_{2}}{\partial y}=\left. \left( u_{y},~v_{y}\right)
\right\vert _{\left( x_{0},y_{0}\right) },
\end{array}
$$
lembrando que as tangentes são calculadas no ponto \(\left(x_{0},y_{0}\right)\). As tangentes são ortogonais, pois, tomando seu produto escalar obtemos
$$
t_{1}\cdot t_{2}=u_{x}u_{y}+v_{x}v_{y}=-u_{x}v_{x}+v_{x}u_{x}=0.
$$
Isto pode ser visualizado na figura abaixo.

Exemplo 14: Vamos visualizar a função \(w=\exp \left(z\right) =e^{z}\) como uma transformação e observar que as curvas \(\left( x_{\ },y_{0}\right)\) e \(\left( x_{0},y\right)\) no plano \(xy\) são levadas em curvas que se interceptam ortogonalmente no plano \(uv\). Notamos primeiramente que
$$
w=e^{x+iy}=e^{x}e^{iy}=e^{x}\left( \cos y+i\text{sen }y\right).
$$
As partes real e imaginária e suas derivadas são
$$
\begin{array}{lll}
u\left( x,y\right) =e^{x}\cos y, & u_{x}=e^{x}\cos y, & u_{y}=-e^{x}\text{sen }y, \\
v\left( x,y\right) =e^{x}\text{sen }y, & v_{x}=e^{x}\text{sen }y, & v_{y}=e^{x}\cos y.
\end{array}
$$
Como as condições de Cauchy-Riemann são satisfeitas e as derivadas parciais são contínuas a função é analítica. Além disto sua derivada é
$$
\frac{de^{z}}{dz}=\frac{\partial e^{z}}{\partial x}=\frac{\partial }{
\partial x}\left( e^{x+iy}\right) =e^{x+iy}=e^{z},
$$
e
$$
\vec{\nabla}u\cdot \vec{\nabla}v=u_{x}v_{x}+u_{y}v_{y}=0.
$$
A reta \(\left( x,~0\right)\) é levada em \(w=e^x\), que é a semi-reta \(u\gt 0,\; v=0\) do plano \(uv\). A reta \(\left( x,~\pi /4\right)\) é levada em \(w=e^{x}e^{i\pi /4}\), que é a semi-reta bissetriz do primeiro quadrante. A reta \(\left( 0,\ y\right)\) é levada em \(w=e^{iy}\), que é a circunferência de raio \(1\). Estas e outras retas de \(xy\) e sua imagem no plano \(uv\) estão representadas na figura. Observe que nenhum ponto de \(\mathbb{C}\) é levado na origem da imagem.

Exercícios

1. Encontre as partes real e imaginárias das seguintes funções:
$$
\begin{array}{ll}
\text{a) }\;\; w=z^{2}-5z+3 & \;\; \text{b) }\;\; w=\frac{z+2}{z-i} \\
\text{c) }\;\; w=e^{iz} & \;\; \text{d) }\;\; w=\sqrt{z}
\end{array}
$$

2. Qual é o domínio máximo de definição das seguintes funções?

$$
\begin{array}{ll}
\text{a)}\ f\left( z\right) =\frac{z}{x}-\frac{y}{z}\ \ \ \ \
& \text{b)}\ f\left( z\right) =\frac{z^{2}+\left( z-1\right) ^{3}}{\left(
e^{z}-1\right) \cos y}
\end{array}
$$

3. Mostre, usando a definição, que
$$
\frac{d}{dz}\left( \frac{1}{z}\right) =-\frac{1}{z^{2}}
$$
para \(z\neq 0\). Obtenha a mesma derivada usando
$$
\frac{d}{dz}\left( \frac{1}{z}\right) =\frac{\partial }{\partial x}\left(
\frac{1}{z}\right)
$$
na região onde \(f\) é analítica.

4. Calcule as derivadas de
$$
\begin{array}{ll}
\text{a)}\ f\left( z\right) =z^{5}+3iz^{2}-1\ \ \ \ \ & \text{b)
}\ f\left( z\right) =\left( z^{2}-1\right) ^{2}\left( iz+1\right) ^{3} \\
\text{c)}\ f\left( z\right) =\frac{z-1}{z-i} & \text{d)}\ f\left(
z\right) =ze^{iz}
\end{array}
$$

5. Mostre por indução que \(\left( z^{n}\right) ^{\prime }=nz^{n-1}\) para todo \(n\) inteiro positivo.

6. Verifique se são analíticas e, em caso afirmativo, em que região são analíticas e quais as derivadas das funções:
$$
\begin{array}{lll}
\text{a)}\;\;w=z^{3} & \text{b)}\;\;w=e^{y+ix} & \text{c)}\;\;w=\bar{z} \\
\text{d)}\;\;w=\sqrt{z} & \text{e)}\;\;w=e^{-z} & \text{f)}\;\;w=x+iy\; \text{ a identidade.}
\end{array}
$$

7. Dadas as funções
$$
\text{(a)}\;\; w=z^{2}\;\; \text{(b)}\;\; w=\frac{1}{z}
$$
faça os gráficos das famílias de curvas \(\ u\left( x,y\right)=c_{1}\) e\ \(v\left( x,y\right) =c_{2}\) e verifique se elas se cruzam ortogonalmente.

Outras funções importantes

<h3Logaritmo

Embora já tenhamos usado o logaritmo em um exercício para mostrar que é uma função analítica em \(\mathbb{C}\) será útil fazermos um estudo mais completo desta função. Como uma revisão nos lembraremos de que o logaritmo natural ou neperiano pode ser definido como a área sob a curva do hipérbole \(y=1/t\), como ilustrado na figura.

Como consequência temos as propriedades:

i) O logaritmo é a inversa da exponencial: \(y=\ln x\Leftrightarrow x=e^{y}\),
ii) a função está definida para \(x>0\) real, \(\ln 1=0 \text{ e } \ln e=1\),
iii) \(\ln \left( ab\right) =\ln a+\ln b\), \(\ln \left( a/b\right) =\ln a-\ln b\),
iv) \(\ln a^{n}=n\ln a\).
Além disto valem os limites
\(\lim_{x\rightarrow 0}\ln x=-\infty ,\ \lim_{x\rightarrow \infty }\ln x=\infty.\)

Uma das motivações que levaram ao estudo dos números complexos foi exatamente a necessidade de se atribuir algum sentido ao logaritmo de números negativos, que não está definido para os reais. Como veremos a extensão desta função para os complexos está definida em \(\mathbb{C}-\left\{ 0\right\}\). Esta extensão é obtida de modo muito natural escrevendo-se
$$
\ln z=\ln re^{i\theta }=\ln r+\ln e^{i\theta }=\ln r+i\theta ,
$$
lembrando que a parte real está bem definida se \(z\neq 0\) pois, neste caso, \(r=\left\vert z\right\vert >0\). Se \(z\) é real então \(\theta =0\) e \(\ln z=\ln r\) e o logaritmo coincide com a função real. Com esta definição podemos dar um sentido ao logaritmo de um número negativo. Um exemplo disto é a célebre identidade escrita por Euler “associando os 4 números mais importantes”,
$$
e^{i\pi }=-1\Rightarrow \ln \left( -1\right) =i\pi .
$$

Observe, no entanto, que definida desta forma a função tem um problema. Ela é uma função “multivalente” , isto é, o mesmo ponto \(z\) pode corresponder a diversos pontos na imagem, o que não é compatível com a definição usual de uma função. Isto ocorre por uma ambiguidade na forma de se expressar o ponto \(z\), no domínio da função. Um ponto pode ser escrito como
$$
z=re^{i\theta }=re^{i\left( \theta +2k\pi \right) },\ k=0,~\pm 1,~\pm 2,…
$$
que pode ser levado em diversos pontos da imagem,
$$
\ln z=\ln re^{i\left( \theta +2k\pi \right) }=\ln r+i\left( \theta +2k\pi
\right) ,\ k\in \mathbb{Z}.
$$
Para torná-la uma função “univalente” podemos proceder da seguinte forma: para qualquer valor do argumento \(\theta\) em \(z=re^{i\theta }=re^{i\left( \theta+2k\pi \right) }\) tomamos \(\theta _{0}\) como o valor do argumento no intervalo \(\left[ 0,~2\pi \right)\). Então
$$
\theta _{0}=\theta +2k\pi ,\ k\in \mathbb{Z}
$$
e definimos o ramo principal (ou determinação) do \(\ln\) como \(\ln \theta =\ln \theta _{0}\). Se restringirmos \(\arg \left( z\right)\) aos intervalos
$$
2k\pi \leq \theta \lt 2\left( k+1\right) \pi ,\ k\in \mathbb{Z}
$$
teremos para cada valor de \(k\) um ramo do \(\ln\), ou seja
$$
\ln _{k}z=\ln r+i\theta .
$$
O logaritmo fica, desta forma, univocamente determinado se informarmos o ramo que está sendo usado. Os pontos \(\theta =0\) representam uma reta de corte em \(\mathbb{C}\), representada na figura (a) e são chamados pontos de ramificação. Pode ser interessante, dependendo da aplicação, estabelecer outra reta de corte definindo ramos diferentes para o \(\ln\). Podemos tomar
$$
\alpha \leq \theta \lt \alpha +2 \pi \;\;\text{ ou }\;\; \alpha \lt \theta \leq \alpha +2\pi,
$$
como representado na figura (b). Ao tomar estas restrições dizemos que \(\mathbb{C}\) foi cortado ao longo de \(z=re^{i\alpha }\).

Como já visto o logaritmo é analítico em \(z\neq 0\) no ramo principal, conclusão que pode ser ampliada para qualquer ramo. Por outro lado, usando a regra da cadeia, obtemos sua derivada,
$$
\frac{d}{dz}\ln \left( z\right) =\frac{\partial }{\partial x}\ln \left(z\right) =\frac{\partial }{\partial x}\left( \ln r+i\theta \right)
=\left(\frac{\partial r}{\partial x}\frac{\partial }{\partial r}+\frac{\partial\theta }{\partial x}\frac{\partial }{\partial \theta }\right)
\left( \ln r+i\theta \right),
$$
e as derivadas \(r_x=\cos \theta,\;\; r_y=-\text{sen }\theta /r\)
$$
\frac{d}{dz}\ln \left( z\right) =\left( \frac{\partial r}{\partial x}\frac{\partial }{\partial r}+\frac{\partial \theta }{\partial x}\frac{\partial }{\partial \theta }\right) \left( \ln r+i\theta \right) =\left( \frac{1}{r}\frac{\partial r}{\partial x}+i\frac{\partial \theta }{\partial x}\right) =
$$
$$
=\frac{\cos \theta }{r}-i\frac{\text{sen }\theta }{r}=\frac{e^{-i\theta }}{r}=\frac{1}{re^{i\theta }}=\frac{1}{z}.
$$

Um maneira prática de se visualizar o efeito da função logaritmo, e de outras funções igualmente, é encará-la como uma transformação entre pontos de \(\mathbb{C}\). Na tabela seguinte estão listados alguns conjuntos de pontos no domínio e sua imagem pelo logaritmo.

$$
\begin{array}{lll}
\text{Imagem } & z & \text{Domínio, } f\left( z\right) \\
\text{ponto } & z=0 & \ln 0=1 \\
\text{ponto } & z=i & \ln \left( i\right) =i\pi /2 \\
\text{reta } & \theta = cte. & v=\theta \left( \text{reta}\right) \\
\text{círculo } & r=1 & u=0\; \text{ (reta)} \\
\text{círculo } & r \gt 1 & u= \text{ cte. positivo (reta.)}
\end{array}
$$

Cada ramo tem como imagem uma faixa no plano \(w\), satisfazendo \(-\infty\lt u\lt \infty,\;\; 0\leq v \lt 2\pi\). A totalidade dos ramos cobre o plano \(w\). Observe na figura que retas \(\theta =\) cte. no plano \(z\) são levadas em \(w=\ln r+i\theta\) no plano \(w\), que são retas \(u=\) cte., enquanto circunferências \(r=\) cte. são levadas nas retas \(v=\) cte.no plano \(w\). A circunferência \(r=1\) tem como imagem a reta \(u=0\) (o eixo \(\mathcal{O}v)\) enquanto circunferências com raios menores (maiores) que 1 são levadas em retas verticais à esquerda (direita) do eixo \(\mathcal{O}v\).

Observe as funções exponencial e logaritmo são inversas mútuas: tome
$$
w=\ln _{k}z=\ln r+i\left( \theta +2k\pi \right) ,\ k=0,1,2,…
$$
Então, tomando a exponencial deste último termo temos
$$
e^{w}=e^{\ln _{k}z}=e^{\left[ \ln r+i\left( \theta +2k\pi \right) \right]
}=re^{i\left( \theta +2k\pi \right) }=re^{i\theta }=z.
$$
Por outro lado
$$
\ln _{k}\left( e^{w}\right) =\ln _{k}e^{\left[ \ln r+i\left( \theta +2k\pi\right) \right] }
=\ln _{k}\left( re^{i\theta }\right) =\left[ \ln r+i\left(\theta +2k\pi \right) \right] =w,
$$
como foi afirmado. Outras propriedades adicionais do logaritmo são:

i) \(\ln \left( z_{1}.z_{2}\right) =\ln \left( z_{1}\right) +\ln \left(z_{2}\right)\)
ii) Da propriedade anterior se conclui que \(\ln \left( z^{2}\right) =2\ln z\), ou, por indução, \(\ln \left( z^{n}\right) =n\ln z\).

 

Funções trigonométricas e Hiperbólicas

A partir da equação de Euler e seu conjugado complexo
$$
\begin{array}{l}
e^{iy}=\cos y+i\text{sen }y \\
e^{-iy}=\cos y-i\text{sen }y
\end{array}
$$
podemos verificar que as funções trigonométricas seno e cosseno podem ser escritas como
$$\begin{array}{l}
\cos y=\frac{1}{2}\left( e^{iy}+e^{-iy}\right), \\
\text{sen }y=\frac{1}{2i}\left( e^{iy}-e^{-iy}\right),
\end{array}
$$
definidas apenas para valores reais de \(y\). Podemos extender as funções para ter validade sobre todo o plano complexo fazendo
$$
\cos z=\frac{1}{2}\left( e^{iz}+e^{-iz}\right) ,
$$

(3)

$$
\text{sen }z=\frac{1}{2i}\left( e^{iz}-e^{-iz}\right).
$$
De forma análoga definimos
$$
\text{tag}z=\frac{\text{sen }z}{\cos z},\ \text{cotg}z=\frac{\cos z}{\text{sen }z},\ \sec z=\frac{1}{\cos z},\ \csc z=\frac{1}{\text{sen }z},
$$
respectivamente a tangente, cotangente, secante e cossecante. As derivadas das funções continuam formalmente iguais as derivadas no eixo real:
$$
\left( \text{sen }z\right) ^{\prime }=\cos z,\ \left( \cos z\right)^{\prime }=-\text{sen }z,
$$
como pode ser facilmente verificado derivando-se as expressões em (3). Da mesma forma se verifica que
$$
\begin{array}{l}
\text{sen }\left( -z\right) =-\text{sen }z,\ \ \cos \left( -z\right) =\cos z, \\
\text{sen }^{2}z+\cos ^{2}z=1, \\
\text{sen }\left( z_{1}+z_{2}\right) =\text{sen }z_{1}\cos z_{2}+\cos z_{1}\text{sen }z_{2}, \\
\cos \left( z_{1}+z_{2}\right) =\cos z_{1}\cos z_{2}-\text{sen }z_{1}\text{sen }z_{2}, \\
\text{sen }z=\cos \left( \frac{\pi }{2}-z\right) ;\ \ \cos z=\text{sen }\left( \frac{\pi }{2}-z\right).
\end{array}
$$

As funções hiperbólicas são extendidas para o plano complexo através das definições:
$$
\text{senh}z=\frac{1}{2}\left( e^{z}-e^{-z}\right) ,
$$
$$
\cosh z=\frac{1}{2}\left( e^{z}+e^{-z}\right).
$$
Com estas definições valem
$$
\left( \text{senh }z\right) ^{\prime }=\cosh z;\ \ \left( \cosh z\right) ^{\prime }=\text{senh}z.
$$

Exercícios :

1. Mostre que \(\ln \left( -1\right) =\left( 2k+1\right) \pi i\) e \(\ln \left(i\right) =\left( \frac{4k+1}{2}\right) \pi i,~k=0,\pm 1,\pm 2,…\).

2. Mostre que, se \(x\neq 0\),
$$
\ln \left( x+iy\right) =\frac{1}{2}\ln \left( x^{2}+y^{2}\right) +i\left(
\theta _{0}+2k\pi \right) ,
$$
onde \(\theta _{0}\) é uma das determinações de \(\text{arctg}\left( y/x\right)\).

3. Determine as raízes de

$$
\begin{array}{lll}
\text{(a)}\ e^{z}=-1, & & \text{(b)}\ e^{2z}=-e, \\
\text{(c)}\ e^{z}=-\sqrt{3}+3i, & & \text{(d)}\ \ln z=\pi i/2, \\
\text{(e)}\ e^{z}+6e^{-z}=5, & & \text{(f)}\ e^{3z-4}=-1.
\end{array}
$$

4. Mostre as seguintes relações:
$$
\begin{array}{lll}
\text{(a)}\ \left( \text{sen }z\right) ^{\prime }=\cos z, & \text{(b)}\
\left( \cos z\right) ^{\prime }=-\text{sen }z, & \text{(c)}\ \text{sen }^{2}z+\cos ^{2}z=1, \\
\text{(d)}\ \left( \text{senh}z\right) ^{\prime }=\cosh z, & \text{(e)}\ \left( \cosh z\right) ^{\prime }=\text{senh}z, & \text{(f)}\ \text{sen }\left( iz\right) =i\text{senh }z, \\
\text{(g)}\ \cos \left( iz\right) =\cosh z, & \text{(h)}\ \cosh ^{2}z-\text{senh}^{2}z=1, & \text{(i)}\ \text{senh}\left( z+i\pi \right) =-
\text{senh}z, \\
\text{(j)}\ \cosh \left( z+i\pi \right) =-\cosh z, & \text{(k)}\;\; \cos \left(x+iy\right) =\cos x\cosh y-i\text{sen }x\text{ senh }y.&
\end{array}
$$