Dataframes – Seleções e Ordenamento


Outras formas do construtor de dataframes

dataFrames

Se um dicionário aninhado (onde os valores associados às chaves externas são outros dicionários) é passado no construtor de um DataFrame o pandas interpretará as chaves externas como nomes das colunas e as chaves internas como índices das linhas. Na ausência de um par chave:valor em um ou mais dos dicionários o campo receberá o valor NaN.

» dic = {'Pedro': {'Prova 1': 5.4, 'Prova 3': 7.9},
                'Ana': {'Prova 1': 8.5, 'Prova 2': 9.7, 'Prova 3': 6.6},
               'Luna': {'Prova 2': 5.0, 'Prova 3': 7.0, 'Prova 4': 6.0}
             }
» dfNotas = pd.DataFrame(dic)
» dfNotas
↳
            Pedro    Ana   Luna
  Prova 1     5.4    8.5    NaN
  Prova 3     7.9    6.6    7.0
  Prova 2     NaN    9.7    5.0
  Prova 4     NaN    NaN    6.0

Se os nomes das linhas e das colunas forem fornecidos eles serão exibidos.

» dfNotas.index.name = 'Prova';
» dfNotas.columns.name = 'Aluno'
» dfNotas
↳
  Aluno      Pedro    Ana    Luna
  Prova             
  Prova 1     5.4     8.5     NaN
  Prova 3     7.9     6.6     7.0
  Prova 2     NaN     9.7     5.0
  Prova 4     NaN     NaN     6.0

Com frequência importamos de fontes externas, como faremos abaixo, uma fonte de dados e precisamos verificar sua integridade. Por ex., para encontrar elementos ausentes, preenchidos como NaN, usamos dataFrame.isnull() (o mesmo que pd.isnull(dataFrame)). Para saber quantos valores nulos existem usamos dataFrame.isnull().sum(), que fornece a soma dos campos True para cada campo.

» dfNotas.isnull()    # o mesmo que pd.isnull(dfNotas)
↳ Aluno       Pedro     Ana      Luna
  Prova             
  Prova 1     False     False    True
  Prova 3     False     False    False
  Prova 2     True      False    False
  Prova 4     True      True     False

» dfNotas.isnull().sum()
↳ Aluno
  Pedro    2
  Ana      1
  Luna     1
  dtype: int64

O método dataFrame.notna() (o mesmo que dataFrame.notnull() e o inverso de dataFrame.isnull()) retorna um dataframe booleano com True onde os campos não são nulos. Para inserir manualmente campos nulos usamos a constante pd.NaT e para eliminar linhas (ou colunas) contendo nulos aplicamos dataframe.dropna().

» # para eliminar linhas contendo nulos (o default é axis=0)
» dfNotas.dropna()
↳ Aluno     Pedro     Ana     Luna
  Prova             
  Prova 3     7.9     6.6      7.0
    
» # para eliminar colunas contendo nulos
» dfNotas.dropna(axis=1)
# todas são eliminadas pois existem NaN em todas as colunas

Evidentemente é necessário ter cuidado ao eliminar linhas ou colunas com NaN. Em muitos casos pode ser necessário substituir esses valores por outros, dependendo da aplicação. Para fazer a alteração no próprio frame use o parâmetro inplace = True.

Colunas e índices são objetos do tipo array e podem ser usados com alguns métodos de conjuntos.

» dfNotas.columns
↳ Index(['Pedro', 'Ana', 'Luna'], dtype='object', name='Aluno')

» dfNotas.index
↳ Index(['Prova 1', 'Prova 3', 'Prova 2', 'Prova 4'], dtype='object', name='Prova')

» 'Ana' in dfNotas.columns      # True
» 'Ann' in dfNotas.columns      # False
» 'Prova 5' in dfNotas.index    # False

O mesmo ocorre se o dicionário contiver Series como valores, sendo as chaves usadas como nomes das colunas e os índices das series usados como índices das linhas.

» serie1 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
» serie2 = pd.Series([5, 6, 7, 8], index=['a', 'b', 'c', 'd'])
» serie3 = pd.Series([9, 0, -1, -2], index=['a', 'b', 'c', 'd'])

» dic = {'A':serie1, 'B':serie2, 'C':serie3 }
» pd.DataFrame(dic)
↳ 
      A   B   C
  a   1   5   9
  b   2   6   0
  c   3   7  -1
  d   4   8  -2

Dataframes podem ser criados recebendo Series no construtor.

» disciplinas = pd.Series(['Matemática', 'Física', 'História', 'Geografia'])
» notas = pd.Series([9.0, 5.4, 7.7, 8.9])
» df = pd.DataFrame({'Disciplina':disciplinas, 'Notas': notas})
» df
↳     Disciplina   Notas
  0   Matemática     9.0
  1       Física     5.4
  2     História     7.7
  3    Geografia     8.9

Outros objetos podem ser passados como argumento no construtor:

  • Ndarray (do NumPy) de 2 dimensões,
  • dicionário de arrays, listas ou tuples (todas as sequências devem ter o mesmo comprimento),
  • dicionários de arrays NumPy, de Series ou de outros dicionários,
  • listas de dicionários, Series, listas ou tuplas,
  • Series ou outro dataframe.

Tratamento de dados usando pandas.dataframe

Para os testes e demonstrações que se seguem vamos usar dados reais para demonstrar algumas funcionalidades úteis dos pandas.dataframes.

Fonte de dados

Para realizar os teste com dataframes vamos utilizar os dados encontrados no Gapminder nessa url: 08_gap-every-five-years.tsv. Esse é um arquivo contendo dados com um registro em cada linha e os valores na linha separados por tabs, (tabulação). Esse arquivo pode ser baixado para o seu computador e depois importado para um dataframe ou, como usamos abaixo, importada diretamente do site de Jennifer Bryan (jennybc): Gapminder, no Github.

O arquivo original tem o seguinte formato,

country      continent       year   lifeExp        pop     gdpPercap
Afghanistan       Asia       1952    28.801    8425333   779.4453145
Afghanistan       Asia       1957    30.332    9240934   820.8530296
Afghanistan       Asia       1962    31.997   10267083     853.10071
...

onde os espaços entre valores são tabulações (\t, no python). A primeira linha contém os ‘headers’ ou títulos das colunas. Traduziremos esses títulos da seguinte forma: country ⟼ pais, continent ⟼ continente, year ⟼; ano, lifeExp ⟼ expVida (expectativa de vida), pop ⟼ populacao, gdpPercap ⟼ pibPercap (produto interno bruto, percapita).

» import pandas as pd
» import numpy as np
» # Usando arquivo encontrado no Gapminder
» url =(
      'https://raw.githubusercontent.com/jennybc/'
      'gapminder/master/data-raw/08_gap-every-five-years.tsv'
       )
» url
↳ 'https://raw.githubusercontent.com/jennybc/gapminder/master/data-raw/08_gap-every-five-years.tsv'

» # criamos o dataframe dfPaises. O arquivo importado tem campos separados por tabs 
» dfPaises = pd.read_csv(url, sep='\t')

» # o dataframe tem 1704 linhas e 6 colunas
» dfPaises.shape
↳ (1704, 6)

» dfPaises.head()
↳
          country   continent    year   lifeExp        pop     gdpPercap
  0   Afghanistan        Asia    1952    28.801    8425333    779.445314
  1   Afghanistan        Asia    1957    30.332    9240934    820.853030
  2   Afghanistan        Asia    1962    31.997    10267083   853.100710
  3   Afghanistan        Asia    1967    34.020    11537966   836.197138
  4   Afghanistan        Asia    1972    36.088    13079460   739.981106
  1704 rows × 6 columns 
» # renomeando os campos para nomes em português
» dfPaises.rename(columns={'country':'pais',
                           'continent':'continente',
                           'year':'ano',
                           'lifeExp':'expVida',
                           'pop':'populacao',
                           'gdpPercap':'pibPercap',
                          }, inplace=True)
» # ficamos assim
» dfPaises.columns
↳ Index(['pais', 'continente', 'ano', 'expVida', 'populacao', 'pibPercap'], dtype='object')

» # para reordenar as colunas em sua exibição
» dfPaises = dfPaises[['continente', 'pais', 'ano', 'expVida', 'populacao', 'pibPercap']]

Podemos obter uma visão geral do conjunto de dados importados usando dois métodos. dataframe.info() retorno os nomes das colunas, quantos valores não nulos, seus dtypes, e memória usada nesse armazenamento. Por aí vemos que nossos dados não possuem valores nulos. Caso esses existissem eles teriam que ser localizados e tratados devidamente. O método df.describe() retorna um dataframe contendo a contagem count dos valores (nesse caso, o número de linhas), a média mean desses valores, o desvio padrão std, o valor mínimo e máximo, min, max e os quartis em 25%, 50%, 75%.

» dfPaises.info()
↳ <class 'pandas.core.frame.DataFrame'>
  RangeIndex: 1704 entries, 0 to 1703
  Data columns (total 6 columns):
   #   Column      Non-Null Count  Dtype  
  ---  ------      --------------  -----  
   0   continente  1704 non-null   object 
   1   pais        1704 non-null   object 
   2   ano         1704 non-null   int64  
   3   expVida     1704 non-null   float64
   4   populacao   1704 non-null   int64  
   5   pibPercap   1704 non-null   float64
  dtypes: float64(2), int64(2), object(2)
  memory usage: 80.0+ KB

» dfPaises.describe()
↳ 
                   ano          expVida         populacao         pibPercap
 count      1704.00000      1704.000000      1.704000e+03       1704.000000
  mean      1979.50000        59.474439      2.960121e+07       7215.327081
  std         17.26533        12.917107      1.061579e+08       9857.454543
  min       1952.00000        23.599000      6.001100e+04        241.165876
  25%       1965.75000        48.198000      2.793664e+06       1202.060309
  50%       1979.50000        60.712500      7.023596e+06       3531.846988
  75%       1993.25000        70.845500      1.958522e+07       9325.462346
  max       2007.00000        82.603000      1.318683e+09     113523.132900

Gravação e recuperação de dados em arquivos pickle

Após a verificação de integridade dos dados e a realização das alterações básicas necessárias é boa ideia salvar em disco o dataframe nesse momento. Para isso usamos pandas.to_pickle(dfFrame, 'nomeArquivo.pkl'), gravando um arquivopickle. Para recuperá-lo em qualquer momento usamos dfPaises = pandas.read_pickle('./dados/dataframePaises.pkl').

» # gravando um arquivo pickle
» pd.to_pickle(dfPaises, './dados/dataframePaises.pkl')    

» # mais tarde esse dataframe pode ser recuperado
» del dfPaises   # para limpar essa variável
» dfPaises = pd.read_pickle('./dados/dataframePaises.pkl')
» # o dataframe é recuperado

Seleção e filtragem

As principais formas de seleção de um ou mais valores de um dataframe são os métodos dataframe.loc(), dataframe.iloc(), dataframe.at e dataframe.iat. Um subconjunto de dados do dataframe, seja por seleção de linhas, colunas ou ambas, é denominado de fatia ou slice.

A principal diferença entre loc (at) e iloc (iat) é a seguinte: loc é baseado em labels ou nomes das linhas ou colunas, enquanto iloc é baseado nos índices numéricos (mesmo que tenham nomes) sempre com base 0.

  • dataframe.at[row_label, column_label]
  • dataframe.iat[row_position, column_position]
  • dataframe.loc[row_label, column_label]
  • dataframe.iloc[row_position, column_position]

Na tabela abaixo nos referiremos a um dataframe nomeado como df. (S) se refere a uma Series retornada, (D) a um dataframe.

Operações df.iat e df.at retorna: (índices são posições linhas/colunas)
df.iat[m,n] elemento da m-ésima linha, n-ésima coluna
df.at[lblLinha, lblColuna] elemento linha/coluna relativas aos labels lblLinha/lblColuna
Operações df.iloc retorna: (índices são posições das linhas/colunas)
df.iloc[n] n-ésima linha (S)
df.iloc[[n]] n-ésima linha (D)
df.iloc[-n] n-ésima linha, contando do final
df.iloc[i,j:, n] linhas i, até j (exclusive), coluna n (S)
df.iloc[[i,j,k]:[m,n,o]] linhas i, j, k, colunas m, n, o
df.iloc[:, n] n-ésima coluna (S)
df.iloc[:, [n]] n-ésima coluna (D)
df.iloc[:,-1] última coluna
df.iloc[i:j,m:n] linhas i até j (exclusive), colunas m até n (inclusive)
Operações df.loc retorna: (índices linhas/colunas se referem aos seus labels)
df.loc[n] linha de índice n (S)
df.loc[[n]] linha de índice n (D)
df.loc[:] todas as linhas e colunas (D)
df.loc[:, 'col'] todas as linhas, coluna ‘col’ (S)
df.loc[:, ['col']] todas as linhas, coluna ‘col’ (D)
df.loc[:, ['col1', 'col2']] todas as linhas, colunas ‘col1’ e ‘col2’ (D)
df.loc[i:j, ['col1', 'col2']] linhas com índices de i até i (inclusive), colunas ‘col1’ e ‘col2’ (D)
df.loc[[i,j,k] , ['col1', 'col2']] linhas com índices i, j, k, colunas ‘col1’ e ‘col2’ (D)
df.loc[i:j, 'col1':'coln']] linhas com índices i até j (inclusive), colunas ‘col1’ até ‘coln’ (inclusive) (D)
Atalhos o mesmo que
df['col1'] ou df.col1 df.loc[:, ‘col1’]] (S)
df[['col1', 'col2']] df.loc[:, [‘col1’, ‘col2’]] (D)

Em todos esses métodos uma exceção de KeyError é levantada se um índice ou label não existir na dataframe.

Se o index da linha coincidir com sua posição então df.loc[n] e df.iloc[n] serão as mesmas linhas. Isso nem sempre é verdade, como se verá abaixo com o reordenamento das linhas.

São incorretas as sintaxes: df.loc[-n], df.loc[:, n], df.loc[:, [n]] com n numérico pois os labels devem ser fornecidos.

Exemplos de consultas e seleções

dataframe.iloc()

Para outros exemplos vamos usar o dataframe já carregado, dfPaises, para fazer consultas e seleções, primeiro usando dataframe.iloc(). Lembramos que a contagem de índices sempre se inicia em 0:

» # lembrando que dfPaises.iloc[[0]] é um dataframe, dfPaises.iloc[0] é uma Series
» # primeira linha, pelo índice    
» dfPaises.iloc[[0]]
↳    continente            pais    ano    expVida    populacao     pibPercap
  0        Asia     Afghanistan   1952     28.801      8425333    779.445314

» # última linha, pelo índice    
» dfPaises.iloc[[-1]]
↳         continente          pais     ano    expVida    populacao     pibPercap
  1703        Africa      Zimbabwe    2007     43.487     12311143    469.709298    

» # linhas 15 até 20 (exclusive), colunas 2 até 5 (exclusive)
» dfPaises.iloc[15:20, 2:5]
↳      ano   expVida  populacao
  15  1967     66.22    1984060
  16  1972     67.69    2263554
  17  1977     68.93    2509048
  18  1982     70.42    2780097
  19  1987     72.00    3075321

» # linhas 1, 3, 5 , colunas 2, 5
» dfPaises.iloc[[1,3,5],[2,5]]
↳     ano   pibPercap
  1  1957   820.853030
  3  1967   836.197138
  5  1977   786.113360

» # linhas 1, 3, 5, última coluna
» dfPaises.iloc[[1,3,5],-1]
↳ 1    820.853030
  3    836.197138
  5    786.113360
  Name: pibPercap, dtype: float64

» # todas as linhas, coluna 3
» dfPaises.iloc[:, [3]].head()
↳     expVida
  0    28.801
  1    30.332
  2    31.997
  3    34.020
  4    36.088

» # linhas 0, 3, 6, 24; colunas 0, 3, 5
» dfPaises.iloc[[0,3,6,24], [0,3,5]]
↳    continente   expVida    pibPercap
  0        Asia    28.801   779.445314
  3        Asia    34.020   836.197138
  6        Asia    39.854   978.011439
  24     Africa    43.077  2449.008185

A seleção das linhas nos dois métodos é diferente. Em dataframe.loc[m,n] linhas com labels de m até n (inclusive) são selecionadas. Em dataframe.iloc[m,n] são selecionadas linhas com índices (numéricos) de m até n (exclusive).

» # iloc[m,n] exibe linhas m até n (exclusive)
» dfPaises.iloc[1:2]
↳   continente         pais   ano  expVida  populacao   pibPercap
  1       Asia  Afghanistan  1957   30.332    9240934   820.85303    

» # loc[m:n] exibe linhas m até n (inclusive)
» dfPaises.loc[1:2]
↳     continente          pais    ano   expVida   populacao    pibPercap
  1         Asia   Afghanistan   1957    30.332     9240934    820.85303
  2         Asia   Afghanistan   1962    31.997    10267083    853.10071
dataframe.loc()

Os próximos testes são feitos com dataframe.loc(), que deve receber os labels como índices.

» # todas as linhas, só colunas 'ano' e 'populacao' (limitadas por head())
» dfPaises.loc[:,['ano','populacao']].head()
↳        ano     populacao
  0     1952       8425333
  1     1957       9240934
  2     1962      10267083
  3     1967      11537966
  4     1972      13079460

» # linhas 3 até 6 (inclusive), só colunas 'ano' e 'expVida'
» dfPaises.loc[3:6,['ano', 'expVida']]
↳        ano     expVida
  3     1967      34.020
  4     1972      36.088
  5     1977      38.438
  6     1982      39.854

» # todas as linhas, só colunas 'ano' (restritas por head())
» dfPaises.loc[:, 'ano'].head()
↳ 0    1952
  1    1957
  2    1962
  3    1967
  4    1972

Métodos df.loc, df.iloc, df.at e df.iat

Para explorar um pouco mais a diferença no uso de df.loc e df.iloc vamos criar um dataframe bem simples e sem valores nulos.

» dic = {'Pedro': {'Prova 1': 5.4, 'Prova 2': 6.2, 'Prova 3': 7.9},
         'Ana':  {'Prova 1': 8.5, 'Prova 2': 9.7, 'Prova 3': 6.6},
         'Luna': {'Prova 1': 5.0, 'Prova 2': 7.0, 'Prova 3': 4.3}
        }
» dfNotas = pd.DataFrame(dic)
» dfNotas
↳           Pedro     Ana    Luna
  Prova 1     5.4     8.5     5.0
  Prova 2     6.2     9.7     7.0
  Prova 3     7.9     6.6     4.3

df.loc e df.at usa labels de linhas e colunas.
df.iloc e df.iat usa números (índices) de linhas e colunas.

Nos comentários listamos seleções usando df.iloc para se obter o mesmo retorno.

» dfNotas.loc['Prova 1','Luna']             # dfNotas.iloc[0,2]
↳ 5.0

» dfNotas.loc['Prova 1']                    # dfNotas.iloc[0] (Series)
↳ Pedro    5.4
  Ana      8.5
  Luna     5.0

» dfNotas.loc[['Prova 1']]                  # dfNotas.iloc[[0]] (dataframe)
↳           Pedro   Ana   Luna
  Prova 1     5.4   8.5    5.0

» dfNotas.loc[['Prova 1','Prova 2']]        # dfNotas.iloc[0:2] (dataframe)
↳           Pedro    Ana   Luna
  Prova 1     5.4    8.5    5.0
  Prova 2     6.2    9.7    7.0

» dfNotas.loc['Prova 1': 'Prova 3']         # dfNotas.iloc[0:3] (dataframe)
↳           Pedro    Ana   Luna
  Prova 1     5.4    8.5    5.0
  Prova 2     6.2    9.7    7.0
  Prova 3     7.9    6.6    4.3

» dfNotas.loc[['Prova 1'],['Ana','Luna']]   # dfNotas.iloc[[0],[1,2]]  (dataframe)
↳           Ana   Luna
  Prova 1   8.5    5.0

» dfNotas.loc['Prova 1':'Prova 3', 'Pedro':'Luna']   # dfNotas.iloc[0:3,0:3] (dataframe)
↳           Pedro    Ana    Luna
  Prova 1     5.4    8.5     5.0
  Prova 2     6.2    9.7     7.0
  Prova 3     7.9    6.6     4.3

» dfNotas.loc[:,['Luna']]                   # dfNotas.iloc[:,[2]]
↳           Luna
  Prova 1    5.0
  Prova 2    7.0
  Prova 3    4.3

Observe que em dfNotas.iloc[0:3,0:3] são selecionadas as linhas de índices 0, 1 e 2 e colunas 0, 1 e 2.

Análogos à df.loc e df.iloc temos, respectivamente, df.at[lblLinha, lblColuna] e df.iat[m,n] onde lblLinha, lblColuna se referem aos labels e m, n aos índices das linhas/colunas. Ambos recebem um par e retornam um único valor do dataframe. Quando aplicados em uma Series iat e at recebem um único índice/label localizador de posição.

» dfNotas.iat[2,1]
↳ 6.6
» dfNotas.iloc[0].iat[1]                 # o mesmo que dfNotas.loc['Prova 1'].iat[1]
↳ 8.5
» dfNotas.at['Prova 1', 'Luna']
↳ 5.0
» dfNotas.loc['Prova 1'].at['Ana']       # o mesmo que dfNotas.loc['Prova 1'].iat[1]
↳ 8.5

Nenhuma das duas formas de seleção de uma slice (.loc ou .iloc) copiam um dataframe por referência, como ocorre com numPy.ndarrays. Por exemplo, df = dfNotas.iloc[:,[2]] é uma cópia da 3ª coluna, e não uma referência ou view. Ela pode ser alterada sem que o dataframe original seja modificado. Se um novo valor for atribuído ao slice diretamente, no entanto, o dataframe fica alterado.

» df = dfNotas.iloc[:,[2]]
» df.Luna = 10
» display(df,dfNotas)
↳           Luna
  Prova 1     10
  Prova 2     10
  Prova 3     10

↳           Pedro   Ana   Luna
  Prova 1     5.4   8.5    5.0
  Prova 2     6.2   9.7    7.0
  Prova 3     7.9   6.6    4.3

» # no entanto se o slice receber atribuição direta o dataframe fica alterado
» dfNotas.iloc[:,[2]] = 10

» dfNotas
↳           Pedro    Ana    Luna
  Prova 1     5.4    8.5    10.0
  Prova 2     6.2    9.7    10.0
  Prova 3     7.9    6.6    10.0

» # para inserir valores diferentes outro dataframe de ser atribuído ao slice
» dic = {'Luna': {'Prova 1': 8.5, 'Prova 2': 7.9, 'Prova 3': 10}}
» dfLuna = pd.DataFrame(dic)
» dfNotas.iloc[:,[2]] = dfLuna

» dfNotas
↳           Pedro    Ana   Luna
  Prova 1     5.4    8.5    8.5
  Prova 2     6.2    9.7    7.9
  Prova 3     7.9    6.6   10.0

» # alternativamente, um np.array com shape apropriado pode ser atribuído ao slice
» arrLuna =np.array([2.3, 4.5, 5.6]).reshape(3,1)
» dfNotas.iloc[:,[2]] = arrLuna
» dfNotas
↳          Pedro   Ana   Luna
  Prova 1    5.4   8.5    2.3
  Prova 2    6.2   9.7    4.5
  Prova 3    7.9   6.6    5.6

Na atribuição dfNotas.iloc[:,[2]] = 10 houve o broadcasting de 10 para uma forma compatível com o slice.

Para que a atribuição seja bem sucedida, sem necessidade de broadcasting, um objeto de mesmo formato deve ser atribuído. No caso dfNotas.iloc[:,[2]].shape = dfLuna.shape = (3, 1) (3 linhas, 1 coluna). O mesmo ocorre com a atribuição de um array do numpy.

Manipulando linhas e colunas

Um array booleano pode ser passado como índice de um dataframe. Apenas as linhas correspondentes ao índice True será exibida. Alguns métodos de string estão disponíveis para testes em campos, como df['campo'].str.startswith('str') e df['campo'].str.endswith('str') (começa e termina com). O teste df['campo'].isin(['valor1', 'valor2'])] retorna True se os campos estão contidos na lista.

Para os exemplos usamos o dataframe dfPaises.

» # seleção por array booleano
» dfPaises.loc[dfPaises['ano'] == 2002].head(3)
↳      continente         pais   ano   expVida   populacao    pibPercap
  10         Asia  Afghanistan   2002   42.129    25268405   726.734055
  22       Europe      Albania   2002   75.651     3508512  4604.211737
  34       Africa      Algeria   2002   70.994    31287142  5288.040382

» # quais os paises tem nome começados com 'Al'
» dfPaises.loc[dfPaises['pais'].str.startswith('Al')]['pais'].unique()
↳ array(['Albania', 'Algeria'], dtype=object)

» # quais os paises tem nome terminados em 'm'
» dfPaises.loc[dfPaises['pais'].str.endswith('m')]['pais'].unique()
↳ array(['Belgium', 'United Kingdom', 'Vietnam'], dtype=object)

» # quantas linhas se referem à 'Europe' e 'Africa'
» dfPaises.loc[dfPaises['continente'].isin(['Europe', 'Africa'])].shape[0]
↳ 984

» dfPaises.loc[(dfPaises['continente']=='Africa') & (dfPaises['ano']==1957)].head(4)
↳       continente         pais     ano    expVida    populacao      pibPercap
  25        Africa     Algeria    1957     45.685     10270856    3013.976023
  37        Africa      Angola    1957     31.999      4561361    3827.940465
  121       Africa       Benin    1957     40.358      1925173     959.601080
  157       Africa    Botswana    1957     49.618       474639     918.232535


» # paises e anos com população < 7000 ou expectativa de vida > 82
» dfPaises.loc[(dfPaises['populacao'] < 70000) | (dfPaises['expVida'] > 82)][['ano','pais']]
↳          ano    pais
  420     1952    Djibouti
  671     2007    Hong Kong, China
  803     2007    Japan
  1296    1952    Sao Tome and Principe
  1297    1957    Sao Tome and Principe
  1298    1962    Sao Tome and Principe
Operador significa
& and, e
| or, ou
~ not, negação

O método arr.unique() acima foi aplicado para ver quais os países satisfazem as condições, sem repetições. arr.shape é uma tupla (número linhas, número colunas). Os últimos exemplos fazem testes compostos usando os operadores & (and, e lógico) e | (or, ou lógico).

Se nenhum campo for submetido ao teste lógico todos os valores do dataframe são usados. O mesmo ocorre com a aplicação de uma função, como mostrado para uma função lambda.

» # novos teste com loc e iloc
» dic = {'Pedro': {'Prova 1': 5.4, 'Prova 2': 6.2, 'Prova 3': 7.9},
         'Ana':  {'Prova 1': 8.5, 'Prova 2': 9.7, 'Prova 3': 6.6},
         'Luna': {'Prova 1': 5.0, 'Prova 2': 7.0, 'Prova 3': 4.3}
          }
» dfNotas = pd.DataFrame(dic)
» dfNotas
↳           Pedro     Ana    Luna
  Prova 1     5.4     8.5     5.0
  Prova 2     6.2     9.7     7.0
  Prova 3     7.9     6.6     4.3

» # o teste retorna um df com o mesmo shape que dfNotas
» dfNotas > 6
↳             Pedro    Ana    Luna
  Prova 1     False   True   False
  Prova 2      True   True    True
  Prova 3      True   True   False

» # os campos do df são filtrados pelo df booleano
» dfNotas[dfNotas > 6]
↳           Pedro     Ana    Luna
  Prova 1     NaN     8.5     NaN
  Prova 2     6.2     9.7     7.0
  Prova 3     7.9     6.6     NaN

Funções lambda

Uma função pode ser aplicada sobre elementos de uma coluna específica ou sobre todas as colunas. Veremos mais tarde detalhes sobre o uso de dataframe.apply().

» dfNotas
↳           Pedro     Ana    Luna
  Prova 1     5.4     8.5     5.0
  Prova 2     6.2     9.7     7.0
  Prova 3     7.9     6.6     4.3

» # uma função aplicada à todos os elementos do df
» dfNotas.apply(lambda x: x**2)
↳            Pedro     Ana     Luna
  Prova 1    29.16   72.25    25.00
  Prova 2    38.44   94.09    49.00
  Prova 3    62.41   43.56    18.49

Funções lambda que retornam valores booleanos podem ser usadas para filtragem dos campos de um dataframe. No exemplo dfPaises['pais'].apply(lambda x: len(x)) == 4 retorna True para as linhas onde o campo pais tem comprimento de 4 letras.

» dfPaises.loc[dfPaises['pais'].apply(lambda x: len(x)) == 4].head(2)
↳      continente    pais    ano   expVida   populacao     pibPercap
  264      Africa    Chad   1952    38.092     2682462   1178.665927
  265      Africa    Chad   1957    39.881     2894855   1308.495577

# são os países com nomes de 4 letras:
» set(dfPaises.loc[dfPaises['pais'].apply(lambda x: len(x)) == 4]['pais'])
↳ {'Chad', 'Cuba', 'Iran', 'Iraq', 'Mali', 'Oman', 'Peru', 'Togo'}

# o mesmo que
# dfPaises.loc[dfPaises['pais'].apply(lambda x: len(x)) == 4]['pais'].unique()  # (um array)

O seletor pode ser composto de mais testes, ligados pelos operadores lógicos & e |.

» # paises/anos com nomes compostos por mais de 2 palavras e população acima de 50 milhões
» dfPaises.loc[(dfPaises['pais'].apply(lambda x: len(x.split(' '))) > 2) &
               (dfPaises['populacao']>50_000_000)]

↳      continente    pais                  ano   expVida   populacao    pibPercap
  334      Africa    Congo, Dem. Rep.     2002    44.966    55379852   241.165876
  335      Africa    Congo, Dem. Rep.     2007    46.462    64606759   277.551859

Ordenamento com Sort

Para ordenar um dataframe podemos usar o método sort, com a seguinte sintaxe:

dataframe.sort_values(by=['campo'], axis=0, ascending=True, inplace=False)
onde
by pode ser uma string ou lista com o nome ou nomes dos campos, na prioridade de ordenamento,
axis{0 ou ‘index’, 1 ou ‘columns’} default 0, indica o eixo a ordenar,
ascending=True/False se ordenamento é crescente/decrescente.

Existem vários outros parâmetros para o controle de ordenamentos, como pode ser lido no API reference do pandas.

Muitas informações importantes sobre um conjunto de dados podem ser obtidas apenas pela inspecção dos dados. Por exemplo, podemos encontrar respostas para:

  • que país do mundo teve, em qualquer ano, o PIB percapita mais elevado?
  • no ano de 2007 (o último de nossa lista), quais são os 5 países com maior população, e quais são os 5 com PIB mais baixo, no mundo?
  • no ano de 2002, quantos países no mundo tinham PIB percapita acima e abaixo da média?
# encontramos o maior pib percapita e a linha que corresponde a ele   
» dfMax = dfPaises[dfPaises['pibPercap']==dfPaises['pibPercap'].max()]
» dfMax
↳     continente    pais   ano   expVida  populacao    pibPercap
  853       Asia  Kuwait  1957    58.033     212846  113523.1329

» # para formatar uma resposta amigável
» ano = dfMax['ano'].values[0]
» pais = dfMaxPib['pais'].values[0]
» pibP = dfMaxPib['pibPercap'].values[0]

» print('O PIB percapita máximo foi de {} e ocorreu no {} em {}.'.format(pibP, pais, ano))
↳ O PIB percapita máximo foi de 113523.1329 e ocorreu no Kuwait em 1957.

» # ordenando em ordem decrescente
» dfPaises.sort_values(by=['pibPercap'], ascending=False).iloc[[0]]
↳      continente     pais   ano  expVida  populacao     pibPercap
  853        Asia   Kuwait  1957   58.033     212846   113523.1329

Observe que dfMax['ano'] é uma Series que, se exposta diretamente, não contém apenas o ano. Por isso extraimos dele o valor, 1º campo: dfMax['ano'].value[0]. Idem para pais e pibPercap.

Claro que podemos também ordenar o dataframe em ordem descrecente no campo pibPercap e pegar apenas a 1ª linha.
dataframe.iloc[[0]] foi usado para pegar a 1ª linha, cujo índice é 853. A mesma linha seria retornada com dataframe.loc[[853]], o que mostra, mais uma vez, a diferença entre df.loc e df.iloc.

Para encontrar os 5 países com maior população em 2007 usamos a mesma técnica de ordenamento. Primeiro filtramos pelo ano = 2007, ordenamos por população, ordem inversa, e pegamos os 5 primeiros. Para exibir o resultado podemos transformar o dataframe em string, sem os índices.

Para encontrar os 5 países com maior população em 2007, e os 5 com menor PIB:

» # dataframe com 5 maiores populações em 2007
» popMax = dfPaises[dfPaises['ano']==2007].sort_values(by=['populacao'], ascending=False).head()

» print(popMax[['pais','populacao']].to_string(index=False))
↳          pais  populacao
          China 1318683096
          India 1110396331
  United States  301139947
      Indonesia  223547000
         Brazil  190010647

» # o 5 países com menor pib:
» # criamos um dataframe apenas do ano 2007 e acrescentamos o campo pib
» # pib = pibPercap * populacao
» df2007 = dfPaises[dfPaises['ano']==2007]
» df2007['pib'] = df2007['pibPercap'] * df2007['populacao']       

» # são os países com menor pib em 2007
» df2007.sort_values(by=['pib']).head()['pais']
↳ 1307    Sao Tome and Principe
  323                   Comoros
  635             Guinea-Bissau
  431                  Djibouti
  563                    Gambia
  Name: pais, dtype: object

# se não precisamos mais do df, podemos apagá-lo
» del df2007

Para saber quantos países tem PIB percapita acima e abaixo da média em 2002 primeiro encontramos essa média. Depois selecionamos as linhas que satisfazem com pibPercap >= media e pibPercap < media. Para saber quantas linhas restaram contamos, por exemplo, quantos elementos existem em seu index.

» # média do pibPercap em 2002 (um escalar)
» media2002 = dfPaises[dfPaises.ano==2002]['pibPercap'].mean()
» acima = dfPaises[(dfPaises.ano==2002) & (dfPaises.pibPercap ≥= media2002)].index.size
» abaixo = dfPaises[(dfPaises.ano==2002) & (dfPaises.pibPercap < media2002)].index.size

» print('[Dos {} países, {} tem PIB percapita acima da média, {} abaixo da média.'.format(acima+abaixo, acima, abaixo))
↳ Dos 142 países, 44 tem PIB percapita acima da média, 98 abaixo da média.

Obtenção e análise de um slice : Brasil

Em diversas circunstâncias queremos fazer análise de apenas um slice da dataframe geral. Além de simplificar o conjunto de campos podemos conseguir com isso um uso menor de espaço em memória e maior velocidade de processamento.
Podemos, por ex., obter um dataframe separado apenas com a os dados referentes ao Brasil. Passando como índice o array booleano dfPaises['pais'] == 'Brazil' apenas as linhas relativas a esse país serão retornadas.

» dfBrasil = dfPaises[dfPaises['pais'] == 'Brazil'][['ano', 'expVida', 'populacao', 'pibPercap']]
» dfBrasil.head()
↳ 
         ano  expVida   populacao     pibPercap
  168   1952   50.917    56602560   2108.944355
  169   1957   53.285    65551171   2487.365989
  170   1962   55.665    76039390   3336.585802
  171   1967   57.632    88049823   3429.864357
  172   1972   59.504   100840058   4985.711467

O dataframe dfBrasil tem os mesmos índices que aos do segmento de dfPaises, de onde ele foi retirado. Para restabelecer esses índices usamos dataFrame.reset_index(). Se utilizado com o parâmetro drop=True o índice antigo é excluído (e perdido), caso contrário é copiado como uma coluna do dataframe. Para atribuir um nome para o índice usamos dataframe.index.rename('novoNome', inplace=True).

» # os índices iniciais são
» dfBrasil.index
↳ Int64Index([168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179], dtype='int64')

» # resetamos os índices, abandonando a coluna de índices iniciais
» dfBrasil.reset_index(drop=True, inplace=True)
» # novos índices
» dfBrasil.index
↳ RangeIndex(start=0, stop=12, step=1)

» dfBrasil.index.rename('id', inplace=True)
» # o dataframe fica assim:
» dfBrasil.head(3)
↳       ano     expVida     populacao       pibPercap
  id
  0    1952      50.917      56602560     2108.944355
  1    1957      53.285      65551171     2487.365989
  2    1962      55.665      76039390     3336.585802

Podemos usar um campo qualquer como index, com qualquer dtype. No caso abaixo usamos o campo ano como índice.

» # vamos usar o campo ano como index
» dfBrasil.set_index('ano', inplace=True)
» dfBrasil.head(3)
↳           expVida      populacao       pibPercap
  ano             
  1952.0     50.917     56602560.0     2108.944355
  1957.0     53.285     65551171.0     2487.365989
  1962.0     55.665     76039390.0     3336.585802

» # agora os índices passam a ser o ano
» dfBrasil.loc[1997]            # é uma Series
↳ expVida      6.938800e+01
  populacao    1.685467e+08
  pibPercap    7.957981e+03
  Name: 1997.0, dtype: float64

» # dfBrasil.loc[[1997]]            # é um dataframe

Para restaurar a coluna ano copiamos o índice para essa coluna e restauramos o índice.

» # restauramos a coluna ano
» dfBrasil['ano'] = dfBrasil.index
» # e resetamos o indice
» dfBrasil.reset_index(drop=True, inplace=True)

» dfBrasil.head(3)
↳    expVida   populacao     pibPercap    ano
  0   50.917    56602560   2108.944355   1952
  1   53.285    65551171   2487.365989   1957
  2   55.665    76039390   3336.585802   1962

Linhas podem ser inseridas de várias formas. Um delas consiste em criar novos dataframes com as linhas a inserir e concatenar como a dataframe inicial. Para isso usamos pandas.concat(): pd.concat([dfInicio, dfFinal]).
Vamos inserir linhas com dados fictícios, apenas para efeito de aprendizado.

» colunas = ['expVida','populacao','pibPercap','ano']      # nomes das colunas, na ordem dos dados
» valores1 = [48.0,45000000,2000.0,1951]                   # valores a inserir no ínicio (ano 1951)
» valores2 = [75.0, 200000000, 9500.0, 2008]               # valores a inserir no final (ano 2008)
» dfP = pd.DataFrame([valores1], columns=colunas)          # df a inserir no ínicio
» dfU = pd.DataFrame([valores2], columns=colunas)          # df a inserir no final
» dfBrasil = pd.concat([dfP, dfBrasil])                    # 1ª linha + dfBrasil
» dfBrasil = pd.concat([dfBrasil, dfU])                    # dfBrasil + última linha

» # agora a 1ª linha é
» dfBrasil.iloc[[0]]
↳    expVida   populacao   pibPercap   ano
  0     48.0   45000000       2000.0  1951

» # a última linha é
» dfBrasil.iloc[[-1]]
↳    expVida   populacao  pibPercap   ano
  0     75.0   200000000     9500.0  2008

» # como os índices ficaram duplicados e desordenados fazemos um reordenamento
» dfBrasil.reset_index(drop=True, inplace=True)

» dfBrasil
↳      expVida     populacao       pibPercap      ano
  0     48.000      45000000     2000.000000     1951
  1     50.917      56602560     2108.944355     1952
  2     53.285      65551171     2487.365989     1957
  ------------ linhas 3 até 11 omitidas ----------------
  12    72.390     190010647     9065.800825     2007
  13    75.000     200000000     9500.000000     2008

Como essas linhas não contém dados corretos, vamos apagá-las. Para usamos dataframe.drop(linha, axis=0, inplace = True), onde linha é o label, que pode não ser numérico) da linha ou seu índice (numérico). Várias linhas podem ser apagadas com dataframe.drop([linha0,...,linhan], axis=0, inplace = True).

» # apagar linhas 0 e 13: axis = 0 se refere às linhas
» dfBrasil.drop([0,13], axis=0, inplace = True)

» # para reordenar os índices
» dfBrasil.reset_index(drop=True, inplace=True)

» # recolocar a coluna 'ano' no início
» dfBrasil = dfBrasil[['ano', 'expVida', 'populacao', 'pibPercap']]
» dfBrasil

# o estado do dataframe agora é
↳ dfBrasil
        ano    expVida     populacao       pibPercap
  0    1952     50.917      56602560     2108.944355
  1    1957     53.285      65551171     2487.365989
  2    1962     55.665      76039390     3336.585802
  ------------ linhas 3 até 8 omitidas ----------------
  9    1997     69.388     168546719     7957.980824
  10   2002     71.006     179914212     8131.212843
  11   2007     72.390     190010647     9065.800825

Vamos inserir uma coluna, atribuindo a ela um escalar (um valor único). Aqui ocorre, como nas Series, o broadcasting, onde o escalar é transformado em uma Series de tamanho apropriado antes de ser inserido na nova coluna. Todas as linhas terão o valor 42 no campo “novoCampo”.

Em seguida alteramos o valor dessa coluna em uma linha específica, usando dataframe.loc(númeroLinha, nomeColuna) ou dataframe.iloc(numeroLinha, numeroColuna). Depois, como essa é uma coluna indesejada, nos a apagamos usando dataframe.drop('nomeColuna', axis=1, inplace=True).

» dfBrasil['novoCampo'] = 42
» dfBrasil.head(3)
↳        ano     expVida     populacao       pibPercap   novoCampo
  0     1952      50.917      56602560     2108.944355          42
  1     1957      53.285      65551171     2487.365989          42
  2     1962      55.665      76039390     3336.585802          42

» # alteramos o 'novoCampo' na linha 1 (usando loc)
» # e a coluna 4 ('novoCampo') na linha 2 (usando iloc, fornecendo o índice)
» dfBrasil.loc[1,'novoCampo'] = 123456
» dfBrasil.iloc[2,4] = 22222

» dfBrasil.head(3)
↳      ano     expVida     populacao       pibPercap     novoCampo
  0   1952      50.917      56602560     2108.944355     42
  1   1957      53.285      65551171     2487.365989     123456
  2   1962      55.665      76039390     3336.585802     22222

» # apagamos essa coluna com drop
» dfBrasil.drop('novoCampo', axis=1, inplace=True)
» # o dataframe fica como no início

Um campo pode ser inserido como resultado de operações entre outros campos. No caso abaixo criamos uma coluna pib que é o produto das colunas populacao × pibPercap. O resultado é aplicado, em cada linha, à nova coluna, em notação científica. Na 1ª linha pib = 1.193716 × 1011.

Outra coluna marca a passagem de quando a expectativa de vida do brasileiro ultrapassa os 60 anos.

» dfBrasil.loc[:,'pib'] = dfBrasil['pibPercap'] * dfBrasil['populacao']
» dfBrasil.head(4)
↳        ano    expVida       populacao       pibPercap     pib
  0     1952     50.917      56602560.0     2108.944355     1.193716e+11
  1     1957     53.285      65551171.0     2487.365989     1.630498e+11
  2     1962     55.665      76039390.0     3336.585802     2.537119e+11
  3     1967     57.632      88049823.0     3429.864357     3.019989e+11

» # inserindo coluna 'acima60'(†)
» dfBrasil.loc[:,'acima60'] = dfBrasil['expVida'] > 60
» dfBrasil.loc[3:6,['ano','expVida','acima60']]
↳      ano   expVida  acima60
  3   1967    57.632    False
  4   1972    59.504    False
  5   1977    61.489     True
  6   1982    63.336     True
  
» dfBrasil[dfBrasil['acima60']]
» # todas as linhas com expVida > 60 são exibidas (output omitido)

» # as colunas podem ser removidas (para ficarmos com o dataframe original)
» dfBrasil.drop(['acima60', 'pib'], axis=1, inplace=True)

() dfBrasil['expVida'] > 60 é uma Series booleana.

Objetos de índices

Em um dataframe, assim como nas Series, a informação relativa aos índices e seus nomes (labels ), assim como os nomes dos eixos, são armazenados em objetos Index (índice). O objeto Index é imutável (não pode ser alterado após a construção).

» pdSerie = pd.Series(range(4), index=['a1', 'a2', 'a3', 'a4'])
» index = pdSerie.index
» index
↳ Index(['a1', 'a2', 'a3', 'a4'], dtype='object')
» # o índice é uma sequência (pode ser lido em slices)
» index[2]
↳ 'a3'
» index[2:]
↳ Index(['a3', 'a4'], dtype='object')

» # o index é imutável
» index[0] = 'A'
↳ TypeError: Index does not support mutable operations

» # já vimos que índices não fornecidos são preenchidos como um range
» pd.Series(range(4)).index
↳ RangeIndex(start=0, stop=4, step=1)
Uma UA é a distância média da Terra ao Sol.
1 UA ≈ 149,6 × 109 m.

No exemplo abaixo construimos primeiro um objeto Index usando pandas.Index(lista). Em seguida construimos uma Series usando esse index, contendo como valores as distâncias dos planeta até o Sol, em unidaddes astronômicas (UA). Com a Series inicializamos um dataframe com o mesmo index.

» # objeto index
» labels = pd.Index(np.array(['mercurio', 'venus', 'terra']))
» labels
↳ Index(['mercurio', 'venus', 'terra'], dtype='object')

» # Serie construída com esse index
» planetas = pd.Series([0.387, 0.723, 1], index=labels)
» planetas
↳ mercurio    0.387
  venus       0.723
  terra       1.000
  dtype: float64

» # o index da Series é o mesmo objeto que labels
» planetas.index is labels
↳ True

» # essa Series pode ser usada para construir um dataframe
» dfPlanetas = pd.DataFrame(planetas)
» dfPlanetas
↳             0
  mercurio    0.387
  venus       0.723
  terra       1.000

» # o index do dataframe é o mesmo que o da Series
» dfPlanetas.index is labels
↳ True

» # alteramos o nome da coluna
» dfPlanetas.rename(columns={0:'distancia'}, inplace=True)
» dfPlanetas
↳           distancia
  mercurio      0.387
  venus         0.723
  terra         1.000

Podemos inserir uma coluna, por exemplo, relativa ao diâmetro dos planetas (comparados ao diâmetro da Terra), atribuindo valores à uma nova coluna de nome ‘diametro’. O objeto atribuído deve ter o mesmo shape (ou passar por broadcasting). Alterar a ordem das colunas, o que pode ser feito com df.reindex(listaColunas), altera todo o dataframe (embora não inplace). O objeto retornado se ajusta de acordo com os índices fornecidos.

» # inserir uma nova coluna
» dfPlanetas['diametro'] = pd.Series([0.382, 0.949, 1], index=labels)
» dfPlanetas
↳         distancia   diametro
  mercurio    0.387      0.382
  venus       0.723      0.949
  terra       1.000      1.000

» # as colunas estão em um objeto Index
» dfPlanetas.columns
↳ Index(['distancia', 'diametro'], dtype='object')

» type(dfPlanetas.columns)
↳ pandas.core.indexes.base.Index

» 'distancia' in dfPlanetas.columns
↳ True

» # podemos alterar a ordem das colunas com reindex
» dfPlanetas.reindex(['venus','terra','mercurio'])
↳       distancia    diametro
  venus     0.723       0.949
  terra     1.000       1.000
  mercurio  0.387       0.382

» # podemos ordenar os índices para ordenar o dataframe
» idx = dfPlanetas.index
» idx = idx.sort_values()
» idx
↳ Index(['mercurio', 'terra', 'venus'], dtype='object')

» dfPlanetas.reindex(idx)
↳         distancia   diametro
  mercurio    0.387      0.382
  terra       1.000      1.000
  venus       0.723      0.949

Diferentes de um conjunto (set) objetos Index podem ter índices repetidos. Se índices inseridos não correspondem à dados existentes estes são preenchidos com NaN. Os parâmetros method='bfill' (ou “ffill” forçam as colunas (ou linhas) com NaN a serem preenchidos com valores das colunas (ou linhas) anteriores ou posteriores. Claro que reindexações podem ser também obtidas com df.loc e df.iloc.

» # índices de linhas repetidos
» duplicados = pd.Index(['mercurio', 'venus', 'terra', 'mercurio', 'marte'])
» duplicados
↳ Index(['mercurio', 'venus', 'terra', 'mercurio', 'marte'], dtype='object')

» dfPlanetas.reindex(duplicados)   # default é axis = 0
↳         distancia   diametro
  mercurio    0.387      0.382
  venus       0.723      0.949
  terra       1.000      1.000
  mercurio    0.387      0.382
  marte         NaN        NaN  

» # índices de colunas repetidos
» duplicados = pd.Index(['distancia', 'diametro', 'diametro', 'distancia', 'massa'])
» dfPlanetas.reindex(duplicados, axis=1)   # sobre colunas
↳          distancia  diametro  diametro  distancia  massa
  mercurio     0.387     0.382     0.382      0.387    NaN
  venus        0.723     0.949     0.949      0.723    NaN
  terra        1.000     1.000     1.000      1.000    NaN

» # method='bfill' lê valor da coluna anterior
» dfPlanetas.reindex(duplicados, axis=1, method='bfill')
↳          distancia  diametro  diametro  distancia    massa
  mercurio     0.387     0.382     0.382      0.387    0.387
  venus        0.723     0.949     0.949      0.723    0.723
  terra        1.000     1.000     1.000      1.000    1.000

» # use method='ffill' para copiar coluna posterior

» # reindexação com loc
» nCol = pd.Index(['diametro', 'distancia'])
» dfPlanetas.loc[['venus','terra'], ['diametro', 'distancia']]
↳        diametro   distancia
  venus     0.949       0.723
  terra     1.000       1.000
» # nCol pode ser uma lista: nCol = ['diametro', 'distancia']

De posse dos índices das linhas e colunas qualquer uma delas pode ser apagada com df.drop(lista, axis). As operações retornam o dataframe modificado, sem alterar o original, a menos que seja marcado o parâmetro inplace=True. Nesse caso os dados removidos serão perdidos.

» dfPlanetas
↳          distancia   diametro
  mercurio     0.387      0.382
  venus        0.723      0.949
  terra        1.000      1.000

» # apagando linhas (axis = 0 é default)
» dfPlanetas.drop(['venus', 'mercurio'])
↳     distancia     diametro
  terra     1.0         1.0

» # apagando colunas
» dfPlanetas.drop(['distancia'], axis=1)
↳           diametro
  mercurio     0.382
  venus        0.949
  terra        1.000

Os seguintes argumentos são usados com reindex

Argumento descrição
index Index ou sequência a ser usada como index,
method forma de interpolação: ‘ffill’ preenche com valor posterior, ‘bfill’ com valor anterior,
fill_value valor a usar quando dados não existentes são introduzidos por reindexing (ao invés de NaN),
limit quando preenchendo com valor anterior ou posterior, intervalo máximo a preencher (em número de elementos),
tolerance quando preenchendo com valor anterior ou posterior, intervalo máximo a preencher para valores inexatos (em distância numérica),
level combina Index simples no caso de MultiIndex; caso contrário seleciona subset,
copy se True, copia dados mesmo que novo índice seja equivalente ao índice antigo; se False, não copia dados quando índices são equivalentes.

Métodos e propriedades de Index

Método descrição
append concatena outro objeto Index objects, gerando novo Index
difference calcula a diferença de conjunto como um Index
intersection calcula intersecção de conjunto
union calcula união de conjunto
isin retorna array booleano indicando se cada valor está na coleção passada
delete apaga índice, recalculando Index
drop apaga índices passados, recalculando Index
insert insere índice, recalculando Index
is_monotonic retorna True se indices crescem de modo monotônico
is_unique returns True se não existem valores duplicados no Index
unique retorna índices sem repetições
🔺Início do artigo

Bibliografia

Consulte bibliografia completa em Pandas, Introdução neste site.

Nesse site:

Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *