Equações Lineares de Segunda Ordem

Uma equação diferencial de segunda ordem tem a forma geral

(1)

$$
\frac{d^{2}y(x)}{dx^{2}}=f\left(x,\,y,\,\frac{dy}{dx}\right).
$$

Ela é uma equação linear se pode ser escrita como
$$
P(x)y^{\prime\prime}+F(x)y^{\prime}+G(x)y=R(x).
$$

Neste caso a equação é dita homogênea se \(R(x)=0\). Caso contrário ela é não homogênea. Em muitos casos é útil dividir toda a equação por \(P(x)\), onde esta função não se anula, e reescrever (1) como
$$
y^{\prime\prime}+f(x)y^{\prime}+g(x)y=r(x),
$$

onde os novos coeficientes de \(y\) e suas derivadas são agora
$$
f(x)=\frac{F(x)}{P(x)},\;\,g(x)=\frac{G(x)}{P(x)},\;\,r(x)=\frac{R(x)}{P(x)}.
$$

No caso de ser uma equação homogênea, \(r(x)=0\), então
$$
y^{\prime\prime}+f(x)y^{\prime}+g(x)y=0.
$$

Figura: Sistema massa-mola.

Exemplo 1. Um exemplo importante de equação diferencial de segunda ordem, linear e não homogênea, é o de um corpo de massa \(m\), preso a uma mola de constante elástica \(k\), sob atrito e sujeito à uma força externa variável \(f(t)\), como ilustrado na figura 1. A força que a mola exerce sobre o corpo é dada pela lei de Hooke, \(f=-kx\), enquanto o atrito exerce uma força proporcional à sua velocidade e em direção oposta a ela. Adicionando-se uma força externa \(f(t)\) e usando a segunda lei de Newton temos

(2)

$$
m\frac{d^{2}x(t)}{dt}+c\frac{dx}{dt}+kx=f(t),
$$
onde \(c\) uma constante que descreve o atrito. Aprenderemos mais tarde técnicas de solução de problemas como este.

Exemplo 2. Considere o problema de contorno,
$$
y^{\prime\prime}-y=0;\;\,y(0)=2,\;\,y^{\prime}(0)=-1.
$$
Sabemos, sem auxílio de qualquer técnica de solução, que duas funções elementares satisfazem \(y^{\prime\prime}=y.\) Elas são as exponenciais
$$
y_{1}=e^{x},\;\,y_{2}=e^{-x},
$$

como se pode verificar por derivação e substituição direta. Observe também que uma combinação linear destas soluções formam ainda uma solução
$$
y(x)=Ae^{x}+Be^{-x},
$$

\(A\) e \(B\) constantes indeterminadas. Mostre, como um exercício, que esta é realmente uma solução. Esta é a chamada solução geral para este problema. Para satisfazer as condições de contorno precisamos da derivada
$$
y^{\prime}(x)=Ae^{x}-Be^{-x}.
$$

Calculando os valores de \(y\) e \(y^{\prime}\) no ponto \(x=0\) temos
$$
y(0)=A+B=2,\;\,y^{\prime}(0)=A-B=-1
$$

que é uma sistema, com solução \(A=1/2\) e \(B=3/2.\) A solução particular é, portanto,
$$
y(x)=\frac{1}{2}e^{x}+\frac{3}{2}e^{-x},
$$

satisfazendo simultaneamente a equação diferencial e os valores de contorno.

Exemplo 3. Vamos resolver o problema de contorno,

(3)

$$
y^{\prime\prime}+\omega^{2}y=0;\;\,y(0)=\frac{1}{2},\;\,y^{\prime}(0)=\omega,
$$
onde \(\omega\) é uma constante. Conhecemos duas funções cujas derivadas segundas são iguais a si mesmas com sinal invertido, que são as funções seno e cosseno. Devido à presença da constante \(\omega\) precisamos usar as soluções
$$
y_{1}=\cos\omega x,\;\,y_{2}=\text{ sen }\omega x.
$$

Mais uma vez, uma combinação linear destas soluções forma a solução geral,
$$
y(x)=A\cos\omega x+B\text{ sen }\omega x,
$$

como se pode verificar por derivação e substituição na equação (3). Sua derivada primeira é
$$
y^{\prime}(x)=-\omega A\text{ sen }x+\omega B\cos x.
$$

No ponto \(x=0\) temos
$$
y(0)=A=\frac{1}{2},\;\,y^{\prime}(0)=\omega B=\omega,
$$

e, portanto \(A=1/2\) e \(B=1\). Como resultado chegamos à solução particular
$$
y(x)=\frac{1}{2}\cos\omega x+\text{ sen }\omega x,
$$

satisfazendo a equação diferencial e os valores de contorno.

Vimos nos exemplos acima que cada uma das equações diferenciais consideradas admite duas soluções e que uma combinação linear destas soluções é também uma solução. é necessário agora considerar em que situações a combinação linear de duas soluções encontradas representa a solução mais geral do problema e quando esta solução poderá ser ajustada às condições de contorno. Na seção seguinte aprimoramos nosso tratamento formal das equações diferenciais lineares de segunda ordem.

Soluções Fundamentais das Equações Homogêneas Lineares

Vamos considerar novamente as soluções da equação linear homogênea
$$
y^{\prime\prime}+f(x)y^{\prime}+g(x)y=0.
$$
Sejam \(f(x)\) e \(g(x)\) funções contínuas, definidas no intervalo \(I=[a,b]\) (que pode ser a reta real inteira, \(I=\mathbb{R}\)), e \(\phi\) uma função duplamente derivável no intervalo \(I\). Definimos o operador diferencial

(4)

$$
L[\phi]=\phi^{\prime\prime}+f\phi^{\prime}+g\phi.
$$
Escrita em termos deste operador a equação (4) é
$$
L[\phi]=0.
$$

O operador \(L\) é formado por derivações e multiplicação pelas funções \(f\) e \(g\)
$$
L=D^{2}+fD+g,
$$

onde escrevemos o operador derivada como \(D=d/dx\).

Definição Um operador \(O\) é dito linear se
$$
O[\alpha f+\beta g]=\alpha O[f]+\beta O[g],
$$

onde \(\alpha\) e \(\beta\) são constantes e \(f\) e \(g\) são funções dentro do domínio de atuação do operador.

(1) De fato, a derivada de qualquer ordem é um operador linear.

Exemplo 4. A derivada primeira e a derivada segunda são operadores lineares(1) pois
$$
\frac{d}{dx}[\alpha f(x)+\beta g(x)]=\alpha\frac{d}{dx}f(x)+\beta\frac{d}{dx}g(x),
$$
$$
\frac{d^{2}}{dx^{2}}[\alpha f(x)+\beta g(x)]=\alpha\frac{d^{2}}{d^{2}x}f(x)+\beta\frac{d^{2}}{d^{2}x}g(x),
$$

\(\alpha\) e \(\beta\) constantes.

Exemplo 5. O operador \(L\) definido em (4) é um operador linear, pois
$$ \begin{array}{rl}
L[c_1 y_1 +c_2 y_2] & \equiv D^2 [c_1 y_1 +c_2 y_2 ]+fD[c_1 y_1 +c_2 y_2 ]+g[c_1 y_1 +c_2 y_2 ] & \\
& =c_1 D^2 [y_1]+c_2 D^2 [y_2]+c_1 fD[y_1]+c_2 fD[y_2]+c_1 gy_1 +c_2 gy_2 & =c_1 L[y_1]+c_2 L[y_2].
\end{array} $$

Podemos agora enunciar um teorema que nos permite determinar os intervalos sobre os quais a solução de uma equação diferencial é única.

Teorema 1. Se \(f(x)\) e \(g(x)\) são funções contínuas no intervalo aberto \(I\) que contém o ponto \(x_{0}\) então o problema de valor inicial
$$
L[y]=y^{\prime\prime}+f(x)y^{\prime}+g(x)y=r(x),\;\,y(x_{0})=y_{0},\;\,y^{\prime}(x_{0})=y_{0}^{\prime},
$$

admite uma única solução sobre todo o intervalo \(I\).

Exemplo 6. Vamos encontrar o intervalo mais amplo onde o problema de valor inicial
$$
(x^{2}-x)y^{\prime\prime}+xy^{\prime}+(x-1)y=0,\;y\left(\frac{1}{2}\right)=1,\;y^{\prime}\left(\frac{1}{2}\right)=0
$$

admite solução. Começamos por reescrever a equação acima como
$$
y^{\prime\prime}+\frac{x}{x(x-1)}xy^{\prime}+\frac{x-1}{x(x-1)}y=0
$$

e, portanto, identificamos
$$
f=\frac{1}{x-1},\;g=\frac{1}{x}
$$

que possuem descontinuidades nos pontos \(x=1\) e \(x=0\). O maior intervalo que inclue o ponto \(x=1/2\) é o aberto \(I=(0,1)\).

Exemplo 7. Se \(f(x)\) e \(g(x)\) são funções contínuas em torno do intervalo \(I\) que contém o ponto \(x_{0}\), o problema de valor inicial
$$
y^{\prime\prime}+f(x)y^{\prime}+g(x)y=0,\;y(x_{0})=0,\;y^{\prime}(x_{0})=0
$$

admite como solução \(y(x)\equiv0\). Pelo Teorema 1 esta é a única solução.

Teorema 2: (Princípio da superposição) Se \(y_{1}\) e \(y_{2}\) são soluções de
$$
L[y]=y^{\prime\prime}+fy^{\prime}+gy=0
$$

então a combinação linear
$$
y(x)=c_{1}y_{1}+c_{2}y_{2}
$$
é também uma solução.

Demonstração: Segue direto da linearidade do operador \(L\), pois
$$
L[c_{1}y_{1}+c_{2}y_{2}]=c_{1}L[y_{1}]+c_{2}L[y_{2}]=0,
$$

já que \(L[y_{1}]=0,\;\;L[y_{2}]=0\) (pois \(y_{1}\) e \(y_{2}\) são soluções).

Observe que o princípio da superposição somente se aplica a equações lineares e homogêneas. Os dois exemplos seguintes mostram que o teorema não se aplica a equações diferenciais não lineares ou não homogêneas.

Exemplo 8. Podemos verificar por substituição direta que
$$
y_{1}=x^{2},\;\;y_{2}=1
$$

são soluções da equação diferencial não linear
$$
y^{\prime\prime}y-xy^{\prime}=0.
$$

No entanto, as combinações lineares
$$
-y_{1}=-x^{2},\;\,y_{1}+y_{2}=1+x^{2}
$$

não são soluções.

Exemplo 9. Podemos verificar por substituição que a equação diferencial não homogênea
$$
y^{\prime\prime}+y=1
$$

admite as soluções
$$
y_{1}=1+\cos x,\;\;y_{2}=1+\text{ sen }x.
$$

As seguintes combinações lineares
$$
2y_{1}=2+2\cos x,\;\;y_{1}+y_{2}=2+\cos x+\text{ sen }x
$$

não são soluções desta equação.

Temos agora condições para responder à seguinte pergunta: na solução de um problema de segunda ordem, tendo encontrado uma solução geral na forma de
$$
y(x)=c_{1}y_{1}+c_{2}y_{2},
$$

é sempre possível ajustar as constantes \(c_{1} \text{ e } c_{2}\) de modo a satisfazer as condições de contorno
$$
y(x_{0})=y_{0},y^{\prime}(x_{0})=y_{0}^{\prime},
$$

onde \(x_{0},\;y_{0}\) e \(y_{0}^{\prime}\) são números reais? Para responder a esta pergunta escreveremos as condições de contorno
$$
y(x_{0})=c_{1}y_{1}(x_{0})+c_{2}y_{2}(x_{0})=y_{0},
$$

$$
y^{\prime}(x_{0})=c_{1}y_{1}^{\prime}(x_{0})+c_{2}y_{2}^{\prime}(x_{0})=y_{0}^{\prime}.
$$

As mesmas equações podem ser escritas sob forma matricial como

(5)

$$
\begin{bmatrix} y_{1}(x_{0}) & y_{2}(x_{0}) \\ y_{1}^{\prime}(x_{0}) & y_{2}^{\prime}(x_{0}) \end{bmatrix}
\begin{bmatrix} c_{1} \\ c_{2} \end{bmatrix}
=
\begin{bmatrix} y_{0} \\ y_{0}^{\prime} \end{bmatrix}
$$
Usamos a notação para o determinante de uma matriz A: \(\det(A)= \left|A\right|\).

Sabemos, da álgebra Linear, que este sistema só admite solução se o determinante da matriz \(2\times2\) acima for não nulo. Este determinante aparece em diversos contextos na teoria das equações diferenciais e recebe o nome de Wronskiano.

Definição: O Wronskiano \(W\) de duas funções \(f(x)\) e \(g(x)\) é o determinante

$$
W(f,g)=
\left|
\begin{array}{rr}
f(x) & g(x) \\
f^{\prime}(x) & g^{\prime}(x) \\
\end{array}
\right|
= f(x) g^{\prime}(x) – f^{\prime}(x) g(x).
$$

De posse desta definição e retornando ao sistema (5) podemos usar a regra de Cramer para encontrar \(c_{1}\) e \(c_{2}\).
$$
c_{1}=\frac{ \left|
\begin{array}{rr}
y_{0} & y_{2}(x_{0}) \\
y_{0}^{\prime} & y_{2}^{\prime}(x_{0}) \\
\end{array}
\right|}
{\left|
\begin{array}{rr}
y_{1}(x_{0}) & y_{2}(x_{0}) \\
y_{1}^{\prime}(x_{0}) & y_{2}^{\prime}(x_{0}) \\
\end{array}
\right|}
=\frac{
\left|
\begin{array}{rr}
y_{0} & y_{2}(x_{0}) \\
y_{0}^{\prime} & y_{2}^{\prime}(x_{0}) \\
\end{array}
\right|} {W(y_{1},y_{2})|_{x_{0}}},
$$
$$
c_{2}=\frac{ \left|
\begin{array}{rr}
y_{1}(x_{0}) & y_{0} \\
y_{1}^{\prime}(x_{0}) & y_{0}^{\prime} \\
\end{array}
\right|}
{\left|
\begin{array}{rr}
y_{1}(x_{0}) & y_{2}(x_{0}) \\
y_{1}^{\prime}(x_{0}) & y_{2}^{\prime}(x_{0}) \\
\end{array}
\right|}
=\frac{
\left|
\begin{array}{rr}
y_{1}(x_{0}) & y_{0}) \\
y_{1}^{\prime}(x_{0}) & y_{0}^{\prime} \\
\end{array}
\right|} {W(y_{1},y_{2})|_{x_{0}}},
$$

onde \(W(y_{1},y_{2})|_{x_{0}}\) é o Wronskiano das duas soluções calculado no ponto \(x_{0}\).

Demonstramos desta forma um teorema importante, enunciado a seguir.

Teorema 3. O problema de valor inicial
$$
L(y)=0,\;\,y(x_{0})=y_{0},\;\,y^{\prime}(x_{0})=y_{0}^{\prime}
$$

possui solução se \(W(y_{1},y_{2})|_{x_{0}}\neq 0\). Isto equivale a dizer que \(y_{1}\) e \(y_{2}\) são linearmente independentes (l.i.).

Exercícios 1.

1. Calcule os Wronskianos

a. \( W(e^{2x},\,e^{-5x/2})\)

b. \( W(\text{ sen }x,\cos x)\)

c. \( W(x^{3},\,x^{5})\)

d. \( W(e^{x}\text{ sen }x,e^{x}\cos x)\)

e. \( W(x,\,xe^{x})\)

f. \( W(\cos^{2}x,1+\cos2x)\)

2. Encontre o maior intervalo sobre o qual se pode garantir a existência de solução para o problema de valor inicial:
$$
(x^{2}-3x)y^{\prime\prime}+xy^{\prime}-(x+3)y=0,\;y(1)=2,\;y^{\prime}(1)=1.
$$

Equações com Coeficientes Constantes

O caso mais simples e de mais fácil solução de equações lineares de segunda ordem homogêneas(2) ocorre quando os coeficientes da equação são constantes, resultando em uma equação do tipo

(6)

$$
ay^{\prime\prime}+by^{\prime}+cy=0,
$$

(2) Para resolver o caso não homogêneo, como veremos depois, utilizaremos a solução da homogênea, aqui estudada.

com \(a,\,b\) e \(c\) constantes. Apesar de ser um caso muito particular entre as equações lineares de segunda ordem um grande número de sistemas de interesse para a engenharia e a física é descrito por equações deste tipo, entre eles os osciladores mecânicos amortecidos e submetidos a forças externas e circuitos eletrônicos compostos por indutores, capacitores e resistências, como veremos adiante.

A solução de problemas do tipo proposto pela equação acima sugere o uso de uma solução tentativa sob a forma
$$
y=e^{rx},
$$

onde \(r\) é uma constante ainda desconhecida. Substituindo esta função e suas derivadas
$$
y^{\prime}=re^{rx},\;\,y^{\prime\prime}=r^{2}e^{rx}.
$$

na equação (6) obtemos
$$
e^{rx}(ra^{2}+br+c)=0.
$$

Como a exponencial é não nula para todos os valores de \(x\), o termo dentro dos parênteses deve se anular,
$$
ar^{2}+br+c=0.
$$

Esta é uma equação do segundo grau, denominada a equação característica da equação diferencial (6), e possui duas raízes,
$$
r_{1,2}=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}.
$$

Faremos o tratamento em separado dos três casos possíveis: (i) de duas raízes diferentes reais, (ii) raízes complexas, (iii) duas raízes iguais.

Raízes reais distintas da equação característica

Se as raízes da equação característica são duas raízes reais distintas, \(r_{1}\neq r_{2}\), então
$$
y_{1}=e^{r_{1}x}\;\,\text{ e }\;\,y_{2}=e^{r_{2}x}
$$

são duas soluções. Estas soluções são l.i. pois seu Wronskiano é
$$
W(y_{1},y_{2})=y_{1}y_{2}^{\prime}-y_{1}^{\prime}y_{2}=r_{2}e^{r_{1}x}e^{r_{2}x}-r_{1}e^{r_{1}x}e^{r_{2}x}=e^{(r_{1}+r_{2})x}(r_{2}-r_{1})\neq0,
$$

não nulo porque \(r_{1}\neq r_{2}\). A combinação das duas soluções,
$$
y(x)=c_{1}e^{r_{1}x}+c_{2}e^{r_{2}x},
$$

é, portanto, a solução geral do problema. Verifique, como um exercício, que esta é, de fato, uma solução da equação.

Exemplo 10. Problema de contorno, equação linear de segunda ordem, com coeficientes constantes:
$$
y^{\prime\prime}+y^{\prime}-2y=0,\;\;y(0)=1,\;\;y^{\prime}(0)=0.
$$

Fazemos a tentativa de solução \(y=e^{rx}\) e substituimos \(y\) e suas derivadas na equação diferencial. O resultado é a equação característica
$$
r^{2}+r-2=0.
$$

Esta última tem duas raízes distintas, \(r_{1}=1\) e \(r_{2}=-2\), de onde concluimos que
$$
y_{1}=e^{x}\;\;\text{e}\;\;y_{2}=e^{-2x}
$$

são soluções. O Wronskiano destas soluções é
$$
W(y_{1},y_{2})=y_{1}y_{2}^{\prime}-y_{1}^{\prime}y_{2}=-2e^{x}e^{-2x}-e^{x}e^{-2x}=-3e^{-x}\neq0.
$$

Como o Wronskiano é não nulo \(y_{1}\) e \(y_{2}\) são linearmente independentes e a solução geral tem a seguinte forma:
$$
y(x)=c_{1}e^{x}+c_{2}e^{-2x}.
$$

Para ajustar as constantes ao problema de valor inicial derivamos \(y\).
$$
y(x)=c_{1}e^{x}-2c_{2}e^{-2x},
$$

e o contorno implica no sistema
$$
y(0)=1=c_{1}+c_{2}
$$

$$
y^{\prime}(0)=0=c_{1}-2c_{2},
$$

com solução \(c_{1}=2/3,\) \(c_{2}=1/3.\) Então a solução particular é
$$
y(x)=\frac{2}{3}e^{x}+\frac{1}{3}e^{-2x}.
$$

Calculamos o Wronskiano \(W\) como mero exercíco pois já mostramos que o Wroskiano é sempre não nulo quando as raízes da equação característica são reais e distintas.

Exemplo 11. A equação diferencial
$$
y^{\prime\prime}+\frac{1}{6}y^{\prime}-\frac{1}{6}y=0;\;\,y(0)=5,\;\,y^{\prime}(0)=0
$$

pode ser resolvida com a substituição \(y=e^{rx}\), o que resulta em
$$
e^{rx}\left(r^{2}+\frac{r}{6}-\frac{1}{6}\right)=0.
$$

As raízes da equação característica são
$$
r=\frac{-\frac{1}{6}\pm\sqrt{\left(\frac{1}{6}\right)^{2}+\frac{4}{6}}}{2}\; \text{ e, portanto, }\; r_{1}=-1/2,\; r_{2}=1/3.
$$

A solução geral e sua derivada são, respectivamente,
$$
y=c_{1}e^{-x/2}+c_{2}e^{x/3},\;\,y^{\prime}=-\frac{1}{2}c_{1}e^{x/2}+\frac{1}{3}c_{2}e^{x/3}.
$$

Com as condições de contorno encontramos \(c_{1}\) e \(c_{2}\).

$$
\left.
\begin{array}{rl}
y(0)=c_{1}+c_{2} =5 \\
y^{\prime}(0)=-\frac{1}{2}c_{1}+\frac{1}{3}c_{2} =0 \\
\end{array}
\right\}
\Rightarrow c_{1}=2,\;\;c_{2}=3.
$$
A solução particular fica assim determinada:
$$
y(x)=2e^{-x/2}+3e^{x/3}.
$$

Exercícios 2.

1. \(y^{\prime\prime}+2y^{\prime}-3y=0\)

2. \(y^{\prime\prime}+3y^{\prime}+2y=0\)

3. \(6y^{\prime\prime}-y^{\prime}-y=0\)

4. \(2y^{\prime\prime}-3y^{\prime}+y=0\)

5. \(y^{\prime\prime}+5y^{\prime}=0\)

6. \(4y^{\prime\prime}-9y^ {}=0\)

7. \(y^{\prime\prime}-9y^{\prime}+9y=0\)

8. \(y^{\prime\prime}-2y^{\prime}-2y=0\)

9. \(y^{\prime\prime}+y^{\prime}-2y=0, \;y(0)=1, \;y^{\prime}(0)=1\).

10. \(y^{\prime\prime}+4y^{\prime}+3y=0, \;y(0)=2, \;y^{\prime}(0)=-1\).

11. \(6y^{\prime\prime}-5y^{\prime}+y=0, \;y(0)=4, \;y^{\prime}(0)=0\).

12. \(y^{\prime\prime}+3y^{\prime}=0 , \;y(0)=-2 , \; y^{\prime}(0)=3\).

13. \(y^{\prime\prime}+8y^{\prime}-9y=0 , \; y(0)=1 , \; y^{\prime}(0)=0\).

14. \(4y^{\prime\prime}-y=0 , \;y(-2)=1 , \;y^{\prime}(-2)=-1\).

13. Resolva o exercício 12 acima pelo método de redução de ordem, fazendo \(y^{\prime}=\phi\Rightarrow y^{\prime\prime}=\phi^{\prime}\).

Algumas Soluções:

1. \(y=c_{1}e^{x}+c_{2}e^{-3x}\)
2. \(y=c_{1}e^{-x}+c_{2}e^{-2x}\)
3. \(y=c_{1}e^{x/2}+c_{2}e^{-x/3}\)
4. \(y=c_{1}e^{x/2}+c_{2}e^{x}\)
5. \(y=c_{1}+c_{2}e^{-5x}\)
6. \(y=c_{1}e^{3x/2}+c_{2}e^{-3x/2}\)
7. \(y=c_{1}\exp\left[9+3\sqrt{5}x/2\right]+c_{2}\exp\left[9-3\sqrt{5}x/2\right]\)
8. \(y=c_{1}\exp\left(1+\sqrt{3}\right)x+c_{2}\exp\left(1-\sqrt{3}\right)x\)
9. \(y=e^{x}\)
10. \(y=\frac{5}{2}e^{-x}-\frac{1}{2}e^{-3x}\)
11. \(y=12e^{x/3}-8e^{x/2}\)
12. \(y=-1-e^{-3x}\)
13. \(y=\frac{1}{10}e^{-9(x-1)}+\frac{9}{10}e^{x-1}\)
14. \(y=-\frac{1}{2}e^{(x+2)/2}+\frac{3}{2}e^{-(x+2)/2}\)

Equação característica com raízes complexas

Se, na equação característica temos \(\Delta=b^{2}-4ac \lt 0\) então as raízes são dois números complexos, conjugados entre si,
$$
r_{1}=\lambda+i\mu,\;\;r_{2}=\lambda-i\mu,
$$

onde
$$
\lambda=\frac{-b}{2a},\;\,\mu=\frac{\sqrt{|\Delta|}}{2a},\,\lambda,\,\mu\in R.
$$

As duas soluções da forma \(y=e^{rx}\) são
$$
y_{1}=e^{(\lambda+i\mu)x}=e^{\lambda x}(\cos\mu x+i\text{ sen }\mu x),
$$

$$
y_{2}=e^{(\lambda-i\mu)x}=e^{\lambda x}(\cos\mu x-i\text{ sen }\mu x),
$$

onde foi usada a fórmula de Euler, \(e^{i\theta}=\cos\theta+i\text{ sen }\theta\). Podemos trabalhar com estas duas soluções ou com combinações lineares destas, em particular
$$
u=\frac{1}{2}(y_{1}+y_{2})=e^{\lambda x}\cos\mu x,
$$

$$
v=\frac{1}{2i}(y_{1}-y_{2})=e^{\lambda x}\text{ sen }\mu x.
$$

Notando que o Wronskiano de \(u\) e \(v\) é não nulo,
$$
W(u,v) = e^{\lambda x}\cos\mu x(\lambda e^{\lambda x}\text{ sen }\mu x+\mu e^{\lambda x}\cos\mu x)
$$
$$
-e^{\lambda x}\text{ sen }\mu x(\lambda e^{\lambda x}\cos\mu x-\mu e^{\lambda x}\text{ sen }\mu x)
$$
$$
=\mu e^{2\lambda x}\neq0,
$$

pois \(\mu\neq0\) (caso contrário as raízes não seriam complexas!), encontramos então a solução geral para o problema:
$$
y(x)=e^{\lambda x}(c_{1}\cos\mu x+c_{2}\text{ sen }\mu x).
$$

Exemplo 12. Encontre a solução geral de
$$
y^{\prime\prime}-2y^{\prime}+2y=0.
$$

Ajuste as constantes da solução geral para satisfazer ao contorno
$$
y(0)=2,\;\,y^{\prime}(0)=3.
$$

Fazendo \(y=e^{rx}\), obtemos a equação característica \(r^{2}-2r+2=0\) com soluções \(r=1\pm i\). Temos portanto o caso de raízes complexas com \(r_{\pm}=\lambda\pm i\mu,\;\lambda=1,\;\mu=1\) que levam a duas soluções
$$
y_{1}=e^{x}\cos x,\;\,y_{2}=e^{x}\text{ sen }x.
$$

Estas soluções são linearmente independentes pois
$$
W(y_{1},y_{2})=e^{x}\cos x(e^{x}\text{ sen }x+e^{x}\cos x)-e^{x}\text{ sen }x(e^{x}\cos x-e^{x}\text{ sen }x)=
$$

$$
=e^{2x}(\text{ sen }x\cos x+\cos^{2}x-\text{ sen }x\cos x+\text{ sen }^{2}x)=e^{2x}\neq0.
$$

A solução geral é
$$
y(x)=c_{1}e^{x}\cos x+c_{2}e^{x}\text{ sen }x.
$$

Para encontrar os valores de \(c_{1}\) e \(c_{2}\) precisamos da derivada
$$
y^{\prime}(x)=c_{1}e^{x}(\cos x-\text{ sen }x)+c_{2}e^{x}(\text{ sen }x+\cos x).
$$

Portanto
$$
y(0)=c_{1}=2,
$$

$$
y^{\prime}(0)=c_{1}+c_{2}=3\Rightarrow c_{1}=2,\;\,c_{2}=1.
$$

A solução particular é
$$
y(x)=2e^{x}\cos x+e^{x}\text{ sen }x.
$$

Exemplo 13. Vamos agora resolver o problema relativo a um objeto preso a uma mola, deslizando sem atrito e não submetido a força externa, descrito pela equação (2) com \(c=0,\;F(t)=0\),
$$
m\frac{d^{2}x(t)}{dt}+kx=0,
$$

ou seja
$$
\ddot{x}+\frac{k}{m}x=0.
$$

Neste problema tomamos o tempo \(t\) como variável independente. \(x(t)\) é a posição do objeto, a função que queremos encontrar. O ponto sobrescrito indica derivada em relação ao tempo. A equação característica é
$$
r^{2}+\frac{k}{m}=0
$$

com raízes
$$
r=\pm\sqrt{\frac{k}{m}}.
$$

Encontramos neste caso
$$
\lambda=0,\;\,\mu=\sqrt{\frac{k}{m}},
$$

e a solução geral indica o movimento em oscilação harmônica do objeto,
$$
x(t)=A\cos\omega t+B\text{ sen }\omega t,
$$

onde definimos \(\omega=\mu\), a frequência da oscilação.

Exercícios 3.

1. \( y^{\prime\prime}+y^{\prime}+y=0\)

2. \( y^{\prime\prime}-2y^{\prime}+6y=0\)

3. \( y^{\prime\prime}+2y^{\prime}-8y=0\)

4. \( y^{\prime\prime}+2y^{\prime}+2y=0\)

5. \( y^{\prime\prime}+6y^{\prime}+13y=0\)

6. \( 4y^{\prime\prime}+9y=0\)

7. \( y^{\prime\prime}+2y^{\prime}+5/4y=0\)

8. \( 9y^{\prime\prime}+9y^{\prime}-4y=0\)

9. \( 16y^{\prime\prime}-8y^{\prime}+145y=0, \;\, y(0)=-2, \;\, y^{\prime}(0)=1\).

10. \( y^{\prime\prime}+4y=0, \;\,y(0)=0, \;\, y^{\prime}(0)=1\).

11. \( y^{\prime\prime}+4y^{\prime}+5y=0, \;\, y(0)=1, \;\, y^{\prime}(0)=0\).

12. \( y^{\prime\prime}-2y^{\prime}+5y=0, \;\, y(\pi/2)=0, \;\, y^{\prime}(\pi/2)=2.\)

13. \( y^{\prime\prime}+y=0, \;\, y(\pi/3)=2,\;\, y^{\prime}(\pi/3)=-4.\)

14. \( y^{\prime\prime}+2y^{\prime}+2y=0, \;\, y(\pi/4)=2, \;\, y^{\prime}(\pi/4)=-2.\)

Algumas Soluções:

1. \( y=c_{1}e^{-x/2}\cos\left(\frac{\sqrt{3}}{2}x\right)+c_{2}e^{-x/2}\text{ sen }\left(\frac{\sqrt{3}}{2}x\right)\)
2. \( y=c_{1}\cos3x+c_{2}\text{ sen }3x\)
3. \( y=c_{1}e^{2x}+c_{2}e^{-4x}\)
4. \( y=c_{1}e^{-x}\cos x+c_{2}e^{-x}\text{ sen }x\)
5. \( y=c_{1}e^{-3x}\cos2x+c_{2}e^{-3x}\text{ sen }2x\)
6. \( y=c_{1}\cos(3x/2)+c_{2}\text{ sen }(3x/2)\)
7. \( y=c_{1}e^{-x}\cos(x/2)+c_{2}e^{-x}\text{ sen }(x/2)\)
8. \( y=c_{1}e^{x/3}+c_{2}e^{-4x/3}\)
9. \( y=\left(-2\cos3x+\frac{1}{4}\text{ sen }3x\right)e^{x/4}\)
10. \( y=\frac{1}{2}\text{ sen }2x\)
11. \( y=e^{-2x}\cos x+e^{-2x}\text{ sen }x\)
12. \( y=-e^{x-\pi/2}\text{ sen }2x\)
13. \( y=\left(1+2\sqrt{3}\right)\cos x-\left(2-\sqrt{3}\right)\text{ sen }x\)
14. \( y=\sqrt{2}e^{-(x-\pi/4)}\cos x+\sqrt{2}e^{-(x-\pi/4)}\text{ sen }x\)

Equação característica com raízes iguais

Se, na equação característica temos \(\Delta=b^{2}-4ac=0\) então temos uma raiz dupla, real,
$$
r=r_{1}=r_{2}=\frac{-b}{2a}.
$$

Neste caso temos apenas uma solução

(7)

$$
y_{1}=e^{rx}=e^{-bx/2a}.
$$

(3) Conhecido como o método de d’Alembert.

Sabemos, no entanto, que devemos ter duas soluções l.i. para construir a solução geral. Utilizaremos novamente o método de variação dos parâmetros(3) já usado para a solução de equações lineares não homogêneas de primeira ordem. Este método consiste no seguinte procedimento:

(i) Encontramos uma solução da equação diferencial. No caso aqui tratado a solução é \(y_{1}\) dada pela equação (7).

(ii) Sabemos, pela linearidade da equação diferencial, que \(y=cy_{1}\) é também uma solução. Fazemos a variação dos parâmetros, \(c\rightarrow v(x)\), ou seja, substituimos a constante \(c\) por uma função desconhecida.

(iii) Derivamos \(y=vy_{1}\) uma e duas vezes e substituimos \(y,\,y^{\prime}\) e \(y^{\prime\prime}\) na equação diferencial para encontrar uma expressão para a função \(v(x)\). Esta expressão é também uma equação diferencial para a função \(v\), mas em geral muito mais simples que a equação original.

Um exemplo, antes da formalização do procedimento, servirá para torná-lo mais claro.

Exemplo 14. Vamos resolver a equação diferencial

(8)

$$
y^{\prime\prime}+2y^{\prime}+y=0.
$$
A equação característica, neste caso, é \(r^{2}+2r+1=0\), que possui as raízes iguais, \(r_{1}=r_{2}=-1\). Neste caso encontramos apenas uma solução
$$
y_{1}=ce^{-x}.
$$

No método de variação dos parâmetros procuramos uma solução na forma de
$$
y(x)=v(x)e^{-x}.
$$

Derivamos \(y\) uma e duas vezes,
$$
y^{\prime}=v^{\prime}e^{-x}-ve^{-x}=e^{-x}(v^{\prime}-v),
$$

$$
y^{\prime\prime}=v^{\prime\prime}e^{-x}-2v^{\prime}e^{-x}+ve^{-x}=e^{-x}(v^{\prime\prime}-2v^{\prime}+v),
$$

e substituimos \(y,\,y^{\prime}\) e \(y^{\prime\prime}\) na equação diferencial para obter
$$
e^{-x}(v^{\prime\prime}-2v^{\prime}+v+2v^{\prime}-2v+v)=0,
$$

ou, após os cancelamentos possíveis e considerando que \(e^{-x}\) não se anula,
$$
v^{\prime\prime}=0.
$$

Esta última equação diferencial tem solução simples
$$
v(x)=A+Bx,
$$

onde \(A\) e \(B\) constantes de integração. A solução procurada para a equação é

(9)

$$
y(x)=ve^{-x}=Ae^{-x}+Bxe^{-x}.
$$
Observe que, a partir da solução \(y_{1}=\) \(e^{-x}\), encontramos \(y_{2}=xe^{-x}\). Como o Wronskiano das soluções encontradas não se anula,
$$
W(e^{-x},xe^{-x})=e^{-x}(e^{-x}-xe^{-x})+e^{-x}xe^{-x}=e^{-2x}\neq0,
$$

estas soluções são l.i. e a função (9) é a solução geral para este problema.

Vamos recapitular o procedimento usado e generalizá-lo. Se, na solução de uma equação diferencial com coeficientes constantes
$$
L[y]=ay^{\prime\prime}+by^{\prime}+cy=0
$$
usamos \(y=e^{rx}\) e encontramos uma equação característica
$$
ar^{2}+br+c=0
$$

onde
$$
\Delta=b^{2}-4ac=0
$$
então encontramos apenas uma raíz real
$$
r=-\frac{b}{2a}
$$

que corresponde a uma única solução para a equação diferencial,
$$
y_{1}=e^{-b/2a}.
$$

Buscamos então uma solução sob a forma
$$
y(x)=v(x)e^{-b/2a},
$$

com derivadas primeira e segunda respectivamente
$$
y^{\prime}=e^{-b/2a}\left(v^{\prime}-\frac{b}{2a}v\right),
$$

$$
y^{\prime\prime}=e^{-b/2a}\left(v^{\prime\prime}-\frac{b}{a}v^{\prime}+\frac{b^{2}}{4a^{2}}v\right).
$$

Substituindo \(y\) e suas derivadas da equação diferencial obtemos
$$
e^{-b/2a}\left(av^{\prime\prime}-bv^{\prime}+\frac{b^{2}}{4a}v+bv^{\prime}-\frac{b^{2}}{2a}v+cv\right)=0
$$

ou, lembrando que a exponencial não se anula,
$$
av^{\prime\prime}+\left(-\frac{b^{2}}{4a}+c\right)v=0.
$$

O termo dentro dos parênteses é nulo (pois \(\Delta=0\)) e, portanto resta apenas a equação diferencial
$$
v^{\prime\prime}=0
$$

para função desconhecida, com solução
$$
v=Ax+B.
$$

A solução procurada para a equação (8) é

(10)

$$
y(x)=ve^{-b/2a}=Ae^{-b/2a}+Bxe^{-b/2a}.
$$
As duas soluções empregadas nesta solução são
$$
y_{1}=e^{-b/2a},\;\,y_{2}=xe^{-b/2a}
$$

que são l.i. pois
$$
W(y_{1},y_{2})=e^{-bx/a}\neq0,
$$

e, portanto a solução (10) é, de fato, a solução geral.

Exemplo 15. Vamos tratar o problema de valor inicial:
$$
9y^{\prime\prime}-12y^{\prime}+4y=0,\;y(0)=2,\;y^{\prime}(0)=-1.
$$

Tomando \(y=e^{rx}\) obtemos a equação característica
$$
9r^{2}-12r+4=0,
$$

que tem raízes reais duplas \(r_{1}=r_{2}=2/3.\) No caso de raízes repetidas para a equação característica a solução, obtida por meio do método da variação dos parâmetros, é
$$
y(x)=Ae^{2x/3}+Bxe^{2x/3}.
$$

e sua derivada,
$$
y^{\prime}(x)=\frac{2}{3}Ae^{2x/3}+Be^{2x/3}+\frac{2}{3}Bxe^{2x/3}.
$$

Para satisfazer as condições iniciais devemos ter
$$
y(0)=A=2,\;y^{\prime}(0)=\frac{2}{3}A+B=-1,
$$

o que implica em \(A=2,\;B=-7/2.\) A solução particular é
$$
y(x)=2e^{2x/3}-\frac{7}{2}xe^{2x/3}.
$$

Temos portanto os três seguintes casos de equações diferenciais lineares de segunda ordem, homogêneas com coeficientes constantes, \(ay^{\prime\prime}+by^{\prime}+cy=0\), que resumiremos no quadro abaixo para facilitar uma referência rápida:

\(r_{1}\neq r_{2}\), raízes reais \(y(x)=c_{1}e^{r_{1}x}+c_{2}e^{r_{2}x},\)
\(r_{1,2}=\lambda\pm i\mu\) raízes complexas \(y(x)=e^{\lambda x}(c_{1}\cos\mu x+c_{2}\text{ sen }\mu x)\),
\(r_{1}=r_{2}=r\) uma raíz real \(c_{1}e^{-b/2a}+c_{2}xe^{-b/2a}.\)

Com isto completamos o tratamento de todos os tipos de equações diferenciais lineares de segunda ordem homogêneas e com coeficientes constantes. Como veremos o método da variação dos parâmetros, discutido por último, pode ser rapidamente generalizado para a solução de uma classe mais ampla de equações diferenciais, desde que se conheça uma da soluções destas equações.

Exercícios 4.

1. \( y^{\prime\prime}-2y^{\prime}+y=0\)

2. \( 9y^{\prime\prime}+6y^{\prime}+y=0\)

3. \( 4y^{\prime\prime}-4y^{\prime}-3y=0\)

4. \( 4y^{\prime\prime}+12y^{\prime}+9y=0\)

5. \( y^{\prime\prime}-2y^{\prime}+10y=0\)

6. \( y^{\prime\prime}-6y^{\prime}+9y=0\)

7. \( 4y^{\prime\prime}+17y^{\prime}+4y=0\)

8. \( 16y^{\prime\prime}+24^{\prime}+9y=0\)

9. \( 25y^{\prime\prime}-20y^{\prime}+4y=0\)

10. \( 2y^{\prime\prime}+2y^{\prime}+y=0\)

11. \( 9y^{\prime\prime}-12y^{\prime}+4y=0,\;\, y(0)=2,\;\, y^{\prime}(0)=-1\).

12. \( y^{\prime\prime}-6y^{\prime}+9y=0,\;\, y(0)=0,\;\, y^{\prime}(0)=2\).

13. \( 9y^{\prime\prime}+6y^{\prime}+82y=0,\;\, y(0)=-1,\;\, y^{\prime}(0)=2\).

14. \( y^{\prime\prime}+4y^{\prime}+4y=0,\;\, y(-1)=2,\;\, y^{\prime}(-1)=1\).

Algumas Soluções:

1. \( y=c_{1}e^{x}+c_{2}xe^{x}\)
2. \( y=c_{1}e^{-x/3}+c_{2}xe^{-x/3}\)
3. \( y=c_{1}e^{-x/2}+c_{2}xe^{-x/2}\)
4. \( y=c_{1}e^{-3x/2}+c_{2}xe^{-3x/2}\)
5. \( y=c_{1}e^{x}\cos3x+c_{2}e^{x}\text{ sen }3x\)
6. \( y=c_{1}e^{3x}+c_{2}xe^{3x}\)
7. \( y=c_{1}e^{-x/4}+c_{2}xe^{-x/4}\)
8. \( y=c_{1}e^{-3x/4}+c_{2}xe^{-3x/4}\)
9. \( y=c_{1}e^{2x/5}+c_{2}xe^{2x/5}\)
10. \( y=c_{1}e^{-x/2}\cos(x/2)+c_{2}e^{-x/2}(x/2)\)
11. \( y=2e^{2x/3}-\frac{7}{3}xe^{2x/3}\)
12. \( y=2xe^{3x}\)
13. \( y=-e^{-x/3}\cos3x+\frac{5}{9}e^{-x/3}\text{ sen }3x\)
14. \( y=7e^{-2(x+1)}+5xe^{-2(x+1)}\)

Redução de Ordem

Usando o método de variação de parâmetros, discutido na seção anterior, podemos tratar de equações diferenciais mais gerais que aquelas já estudadas, com coeficientes constantes. Este método pode ser usado para abaixar a ordem de uma equação diferencial e tornar mais fácil a sua solução desde que uma de suas soluções seja conhecida. Considere uma equação diferencial linear homogênea sob a forma

(11)

$$
y^{\prime\prime}+f(x)y^{\prime}+g(x)y=0,
$$
onde os coeficientes \(f(x)\) e \(g(x)\) não são necessariamente constantes. Ainda, suponha que de algum modo, por inspecção, por intuição advinda da natureza do problema que origina a equação diferencial, ou ainda por meio do uso de outro método qualquer, conhecemos uma das soluções de (11), que denotaremos por \(y_{1}(x)\). Pela linearidade da equação sabemos que \(cy_{1}\), com \(c\) constante, é também uma solução. Buscamos agora uma solução para a equação sob a forma
$$
y(x)=v(x)y_{1}(x)
$$

onde \(v(x)\) é uma função desconhecida. Derivamos a solução tentativa,
$$
y^{\prime}=v^{\prime}y_{1}+vy_{1}^{\prime},
$$

$$
y^{\prime\prime}=v^{\prime\prime}y_{1}+2v^{\prime}y_{1}^{\prime}+vy_{1}^{\prime\prime},
$$

e substituimos na equação diferencial para obter
$$
v^{\prime\prime}y_{1}+v^{\prime}(2y_{1}^{\prime}+fy_{1})+v(y_{1}^{\prime\prime}+fy_{1}^{\prime}+gy_{1})=0.
$$

Observando que o segundo parênteses é nulo, pois \(y_{1}\) é solução da equação diferencial, resta apenas
$$
v^{\prime\prime}y_{1}+v^{\prime}(2y_{1}^{\prime}+fy_{1})=0,
$$
que é, por sua vez, uma equação diferencial para \(v(x)\). Esta equação, ou qualquer outra com esta mesma característica, pode ser transformada em uma equação de primeira ordem através do método de redução de ordem. Para isto fazemos
$$
\phi(x)=v^{\prime}(x)\Rightarrow\phi^{\prime}(x)=v^{\prime\prime}(x).
$$

A equação (11) se transforma em
$$
\phi^{\prime}y_{1}+\phi(2y_{1}^{\prime}+fy_{1})=0,
$$

que é uma equação homogênea de primeira ordem, cuja solução já sabemos encontrar. Lembrando que \(y_{1}\) e suas derivadas são funções conhecidas, primeiro encontramos \(\phi(x)\) e, por integração,
$$
v(x)=\int\phi(x)dx.
$$

A solução de (11) é
$$
y(x)=y_{1}\int\phi(x)dx.
$$

Exemplo 16. Sabendo que \(y_{1}=x\) é uma solução de

(12)

$$
x^{2}y^{\prime\prime}+2xy^{\prime}-2y=0,
$$
vamos encontrar a sua solução geral. Fazemos primeiro \(y=vy_{1}=vx\). Com esta escolha temos
$$
y^{\prime}=v^{\prime}x+v,\;\,y^{\prime\prime}=v^{\prime\prime}x+2v^{\prime}.
$$

Substituindo na equação diferencial (12) temos
$$
x^{2}(v^{\prime\prime}+2v^{\prime})+2x(v^{\prime}x+v)-2vx=0,
$$

$$
v^{\prime\prime}x+4v^{\prime}=0.
$$

Esta equação não contém um termo em \(y\) e por isto sua ordem pode ser reduzida. Denotamos então \(v^{\prime}=\phi\), e portanto \(v^{\prime\prime}=\phi^{\prime}\). Resta a equação separável
$$
\phi^{\prime}x+4\phi=0\Rightarrow\int\frac{d\phi}{\phi}=-\int\frac{4dx}{x}\Rightarrow
$$

$$
\ln\phi=-4\ln x+c^{\prime}\Rightarrow\phi=e^{-4\ln x+c^{\prime}}=cx^{-4}.
$$

Pelas definições feitas
$$
v=\int\phi dx=c\int x^{-4}dx=c\left(\frac{-1}{3x^{3}}\right)+B.
$$

Definindo uma nova constante \(A=-c/3\)
$$
y=vx=Ax^{-2}+Bx,
$$

é a solução geral do problema (12).

Exemplo 17. Uma equação que surge com freqüência dentro do contexto da mecânica quântica e do eletromagnetismo, após a separação de uma equação diferencial parcial em equações ordinárias, é a chamada equação de Legendre de primeira ordem
$$
(1-x^{2})y^{\prime\prime}-2xy^{\prime}+2y=0,-1\lt x\lt 1.
$$

Sabendo que \(y_{1}=x\) é uma solução desta equação encontre a solução geral. Começamos por fazer a variação dos parâmetros para uma solução tentativa
$$
y(x)=xv(x)
$$

cujas derivadas são
$$
y^{\prime}=xv^{\prime}+v,y^{\prime\prime}=xv^{\prime\prime}+2v^{\prime}.
$$

Substituindo na equação diferencial temos
$$
(1-x^{2})(xv^{\prime\prime}+2v^{\prime})-2x(xv^{\prime}+v)+2xv=0,
$$

que, após as devidas simplificações, leva a
$$
(1-x^{2})xv^{\prime\prime}+(2-4x^{2})v^{\prime}=0.
$$

Procedemos agora à redução de ordem fazendo
$$
v^{\prime}=\phi\Rightarrow v^{\prime\prime}=\phi^{\prime}.
$$

Separando as variáveis obtemos

(13)

$$
\frac{\phi^{\prime}}{\phi}=\frac{4x^{2}-2}{x(1-x^{2})}.
$$

Vamos aproveitar este problema para fazer uma revisão da método das frações parciais para a solução de uma integral. O segundo termo acima pode ser transformado, por meio de frações parciais, da seguinte forma:
$$
\frac{4x^{2}-2}{x(1-x^{2})}=\frac{A}{x}+\frac{Bx}{1-x^{2}},
$$

onde \(A\) e \(B\) são constantes a serem encontradas. Efetuando a soma de fração no segundo termo
$$
\frac{4x^{2}-2}{x(1-x^{2})}=\frac{A(1-x^{2})+Bx^{2}}{x(1-x^{2})}=\frac{(B-A)x^{2}+A}{x(1-x^{2})}.
$$

Identificando, no numerador, os coeficientes de mesma potência em \(x\) temos \(A=-2,\;B=2\) e, portanto
$$
\frac{4x^{2}-2}{x(1-x^{2})}=-\frac{2}{x}+\frac{2x}{1-x^{2}}.
$$

Devemos integrar a equação (13),
$$
\int\frac{d\phi}{\phi}=-2\int\frac{dx}{x}+2\int\frac{xdx}{1-x^{2}}
$$

(4) Usamos acima as propriedades da função logaritmo: \(a\ln b=\ln b^{a},\;\;\ln a+\ln b=\ln(ab)\).

para obter(4)
$$
\ln\phi=-2\ln x-\ln(1-x^{2})+c=\ln\frac{1}{x^{2}(1-x^{2})}+c,
$$

ou seja
$$
\phi=c_{1}\frac{1}{x^{2}(1-x^{2})}.
$$

Retornando para a função \(v\),
$$
v=\int\phi dx=c_{1}\int\frac{dx}{x^{2}(1-x^{2})}.
$$

Vamos usar mais uma vez as frações parciais para transformar o integrando,
$$
\frac{1}{x^{2}(1-x^{2})}=\frac{1}{x^{2}}+\frac{1}{1-x^{2}}
$$

e assim encontramos
$$
v=c_{1}\int\left(\frac{1}{x^{2}}+\frac{1}{1-x^{2}}\right)dx.
$$

Observe que a segunda integral
$$
I=\int\frac{1}{1-x^{2}}dx
$$

pode ser resolvida, mais uma vez, pelo mesmo método usado acima, por meio das frações parciais. Para isto fazemos
$$
\frac{1}{1-x^{2}}=\frac{1}{(1+x)(1-x)}=\frac{A}{1+x}+\frac{B}{1-x}
$$

de onde encontramos, procedendo como antes, \(A=B=1/2.\) Então
$$
I=\frac{1}{2}\int\left(\frac{1}{1+x}+\frac{1}{1-x}\right)dx=\frac{1}{2}[\ln(1+x)-\ln(1-x)]=\frac{1}{2}\ln\left(\frac{1+x}{1-x}\right),
$$

e, daí
$$
v=c_{1}\left(-\frac{1}{x}+\frac{1}{2}\ln\frac{1+x}{1-x}\right)+c_{2}.
$$

Restaurando a função \(y=xv\) temos
$$
y=c_{1}\left(-1+\frac{x}{2}\ln\frac{1+x}{1-x}\right)+c_{2}x.
$$

que é a solução geral procurada.

A técnica de redução de ordem não precisa ser usada apenas em conjunção com a variação de parâmetros, tal como fizemos nos dois primeiros exemplos. Qualquer equação diferencial onde não apareça a função incógnita \(y(x)\) explícitamente, mas apenas suas derivadas, pode ter a sua ordem reduzida.

Exemplo 18. Podemos reduzir a ordem da seguinte equação diferencial
$$
xy^{\prime\prime}+2y^{\prime}=0.
$$

fazendo \(v^{\prime}=\phi\), e, portanto, \(v^{\prime\prime}=\phi^{\prime}\). Com esta alteração encontramos uma equação separável de primeira ordem,
$$
x\phi^{\prime}+2\phi=0,
$$

com solução geral
$$
\phi=cx^{-2}.
$$

A partir desta função encontramos \(y\) por integração
$$
y=\int\phi dx=c\int x^{-2}dx=c_{1}x^{-1}+c_{2}.
$$

Um caso adicional interessante pode ser tratado pela técnica de redução de ordem. Se, em uma equação diferencial de segunda ordem, a variável independente não aparece explícitamente, ou seja,
$$
y^{\prime\prime}=f(y,y^{\prime}),
$$
então a redução de ordem
$$
\phi=y^{\prime}\Rightarrow\phi^{\prime}=y^{\prime\prime}
$$

leva a uma equação diferencial sob a forma de

(14)

$$
\phi^{\prime}=f(y,\phi).
$$

Se considerarmos \(y\) como a variável independente então, pela regra da cadeia
$$
\phi^{\prime}=\frac{d\phi}{dx}=\frac{d\phi}{dy}\frac{dy}{dx}=\phi\frac{d\phi}{dy}
$$

e a equação diferencial (14) pode ser escrita como
$$
\phi\frac{d\phi}{dy}=f(y,\phi).
$$

Resolvendo esta equação teremos uma relação para \(\phi(y)\). A solução \(y(x)\) pode então ser obtida por meio da solução de
$$
y(x)=\int\phi dx.
$$

Exemplo 19. A equação diferencial

(15)

$$
yy^{\prime\prime}+(y^{\prime})^{2}=0
$$

pode ser resolvida através da substituição \(\phi=y^{\prime}\), \(\phi^{\prime}=y^{\prime\prime}\). Temos agora que
$$
\phi^{\prime}=\frac{d\phi}{dx}=\frac{d\phi}{dy}\,\frac{dy}{dx}=\phi\frac{d\phi}{dy}.
$$

Substituindo na equação (15) temos
$$
\phi^{\prime}=-\frac{\phi^{2}}{y}.
$$

Usamos agora \(\phi^{\prime}=\phi d\phi/dy\) para obter
$$
\frac{d\phi}{dy}=-\frac{\phi}{y}\Rightarrow\frac{d\phi}{\phi}=-\frac{dy}{y}
$$

cuja solução é
$$
\phi=\frac{A}{y}.
$$

Mas, como \(\phi=y^{\prime}\), então
$$
y^{\prime}=\frac{A}{y}\Rightarrow ydy=Adx,
$$

que, após integração resulta em
$$
y^{2}+c_{1}x+c_{2}=0,
$$

uma solução obtida sob forma implícita.

Exemplo 20. Na equação \(yy^{\prime\prime}=2y^{\prime2}\), faça \(\phi=y^{\prime}\). Pela regra da cadeia,
$$
y^{\prime\prime}=\frac{d\phi}{dx}=\frac{d\phi}{dy}\,\frac{dy}{dx}=\phi\frac{d\phi}{dy}.
$$

Substituindo na equação diferencial temos
$$
y\phi\frac{d\phi}{dy}=2\phi^{2}\Rightarrow\frac{d\phi}{\phi}=2\frac{dy}{y}\Rightarrow\ln\phi=2\ln y+c.
$$

Resolvemos primeiro para \(\phi\),
$$
\phi=y^{\prime}=Cy^{2},
$$

e integramos para encontrar \(y(x)\),
$$
\frac{dy}{y^{2}}=Cdx\Rightarrow-\frac{1}{y}=c_{1}x+c_{2}.
$$

Portanto,
$$
y(x)=\frac{1}{ax+b}.
$$

Exercícios 5.

1. Resolva as equações:

a. \(y^{\prime\prime}=2y^{\prime}\)

b. \(y^{\prime\prime}+4y^{\prime}=0\)

c. \(xy^{\prime\prime}=y^{\prime}\)

d. \(xy^{\prime\prime}+2y^{\prime}=0\)

e. \(y^{\prime\prime}+y^{\prime}=e^{-x}\)

f. \(y^{\prime\prime}=1+y^{\prime2}\)

g. \(x^{2}y^{\prime\prime}=y^{\prime2},x\gt 0\)

2. Equações diferenciais onde a variável independente \(x\) não aparece explicitamente:

a. \(y^{\prime\prime}+4y^{\prime}=0\)

b. \(xy^{\prime\prime}=y^{\prime}\)

c. \(xy^{\prime\prime}+2y^{\prime}=0\)

d. \(y^{\prime\prime}+(y^{\prime})^{2}=-e^{-y}\)

e. \(y^{\prime\prime}=1+(y^{\prime})^{2}\)

f. \(yy^{\prime\prime}-(y^{\prime})^{3}=0\)

Sabendo que \(y_{1}\) é uma solução da equação diferencial, use o método da redução de ordem para encontrar uma segunda solução:

3. \(x^{2}y^{\prime\prime}+2xy^{\prime}=0,\;\,x\gt 0,\;\,y_{1}(x)=1\).

4. \(x^{2}y^{\prime\prime}+3xy^{\prime}+y=0,\;\,x\gt 0,\;\,y_{1}(x)=1/x.\)

5. \(x^{2}y^{\prime\prime}-x(x+2)y^{\prime}+(x+2)y=0,\;\,x\gt 0,\;\,y_{1}(x)=x\).

6. \(xy^{\prime\prime}-y^{\prime}+4x^{3}y=0,\;\,x\gt 0,\;\,y_{1}(x)=\text{ sen }x^{2}\).

7. \((x-1)y^{\prime\prime}-xy^{\prime}+y=0,\;\,x>1,\;\,y_{1}(x)=e^{x}\).

Algumas Soluções:

1b. \(y=c_{1}e^{-4x}+c_{2}\)
1d. \(y=c_{1}/x+c_{2}\)
1e. \(y=c_{1}e^{-x}+c_{2}-xe^{-x}\)
1f. \(y=-\ln\cos(x+c_{1})+c_{2}\)
1g. \(c_{1}^{2}y=c_{1}x-\ln(1+c_{1}x)+c_{2}, \;\text{ se } c_{1}\neq0,\;y=\frac{1}{2}x^{2}+c_{2}, \;\text{ se } c_{2}=0. \;\text{ Ou} y=c\)
2d. \(y=\ln[c_{1}+(x+c_{2})^{2}]\)
2e. \(y=\ln(c_{1}x+c_{2})\)
2f. \(ylny-y+c_{1}y+x+c_{2}=0\)
3. \(y_{2}(x)=1/x\)
4. \(y_{2}(x)=x^{-1}\ln x\)
5. \(y_{2}(x)=xe^{x}\)
6. \(y_{2}(x)=\cos x^{2}\)
7. \(y_{2}(x)=x\)

Equações de Euler

(5) Resolvemos, na seção anterior, algumas destas equações para o caso de ser conhecida uma de suas soluções. Desenvolveremos aqui uma forma de se encontrar as duas soluções l.i..

Podemos agora considerar um caso particular(5) de equações diferenciais de segunda ordem lineares com coeficientes não constantes. Elas são as chamadas equações de Euler e têm a seguinte forma:

(16)

$$
L[y]=x^{2}y^{\prime\prime}+\alpha xy^{\prime}+\beta y=0,
$$
onde \(\alpha\) e \(\beta\) são constantes. Além de seu interesse próprio, como um tipo de equação que podemos tratar de forma completa com simplicidade, o conhecimento deste tipo de solução também servirá para nos orientar na busca de solução de casos mais gerais, feitos através do método de séries de potências tratados no capítulo seguinte. Trataremos inicialmente as soluções para \(x\gt 0\). O ponto \(x=0\) é um ponto que exige consideração especial como veremos no próximo capítulo.

Iniciamos por uma solução tentativa como \( y=x^{r}\), onde \(r\) é uma constante desconhecida à princípio. Derivando uma e duas vezes temos
$$
y^{\prime}=rx^{r-1},y^{\prime\prime}=r(r-1)x^{r-2},
$$

que, quando substituidos na equação diferencial resulta em

(17)

$$
[r(r-1)+\alpha r+\beta]x^{r}=0.
$$

Como \(x^{r}\) não se anula na região considerada (\(x\gt 0\)) temos uma equação do segundo grau para a constante \(r\)
$$
r^{2}+(\alpha-1)r+\beta=0,
$$

com raízes

(18)

$$
r_{1,2}=\frac{(1-\alpha)\pm\sqrt{(\alpha-1)^{2}-4\beta}}{2}.
$$
Mais uma vez temos que considerar em separado os três casos possíveis, de raízes reais distintas, de raízes idênticas e raízes complexas.

Raízes reais distintas

Se as raízes da equação (18) são reais e distintas então temos duas soluções, \(y_{1}=x^{r_{1}}\) e \(y_{2}=x^{r_{2}}\). Elas são l.i. pois o Wronskiano é não nulo,
$$
W(x^{r_{1}},x^{r_{2}})=(r_{2}-r_{1})x^{r_{1}+r_{2}-1}\neq0,
$$

uma vez que \(r_{1}\neq r_{2}\) e \(x\) não se anula no intervalo. Fazendo uma combinação linear destas duas soluções temos
$$
y(x)=c_{1}x^{r_{1}}+c_{2}x^{r_{2}},
$$

que é a solução geral para a equação (16).

Para tratar o caso seguinte, de raízes complexas da equação de Euler precisamos de uma breve discussão preliminar. Observe que, se \(r\in\mathbb{Q}\) (é um racional) então \(x^{r}=x^{m/n}=^{n}\sqrt{x^{m}}\). No caso geral, sendo \(r\) um número racional ou não, definimos
$$
x^{r}\overset{def}{=}e^{rlnx}.
$$
Assim podemos, sem dificuldades, obter a derivada
$$
\frac{\partial}{\partial r}x^{r}=\frac{\partial}{\partial r}(e^{rlnx})=x^{r}\ln x.
$$

Raízes complexas

Se as raízes da equação (18) são complexas, digamos
$$
r_{1}=\lambda+i\mu,\;\;r_{2}=\lambda-i\mu,
$$

as soluções são \(y_{1}=\) \(x^{\lambda+i\mu}\) e \(y_{2}=x^{\lambda-i\mu}\). Elas são igualmente l.i. pois o Wronskiano é não nulo,
$$
W(y_{1},y_{2})=x^{\lambda+i\mu}(\lambda-i\mu)x^{\lambda-i\mu-1}-(\lambda+i\mu)x^{\lambda+i\mu-1}x^{\lambda-i\mu}=
$$

$$
=(-2i\mu)x^{2\lambda-1}\neq 0 \text{ para } x\neq 0,
$$

lembrando que \(\mu\neq0\), caso contrário as raizes não seriam complexas. Encontramos então duas soluções l.i. dadas por
$$
y_{+}(x)=x^{\lambda+i\mu};\;\;y_{-}(x)=x^{\lambda-i\mu}.
$$

Podemos reescrever estas soluções usando a equação de Euler:
$$
y_{+}=e^{(^{\lambda+i\mu})\ln x}=e^{\lambda\ln x}e^{i\mu\ln x}=x^{\lambda}[\cos(\mu\ln x)+i\text{ sen }(\mu\ln x)],
$$

$$
y_{-}=e^{(^{\lambda-i\mu})\ln x}=e^{\lambda\ln x}e^{-i\mu\ln x}=x^{\lambda}[\cos(\mu\ln x)-i\text{ sen }(\mu\ln x)].
$$

Duas combinações lineares de \(y_{1}\) e \(y_{2}\) são obtidas da seguinte forma
$$
y_{1}=\frac{1}{2}(y_{+}+y_{-})=x^{\lambda}\cos\mu\ln x,
$$

$$
y_{2}=\frac{1}{2i}(y_{+}-y_{-})=x^{\lambda}\text{ sen }\mu\ln x,
$$

que são igualmente l. i.. A solução geral pode então ser escrita como
$$
y(x)=x^{\lambda}[c_{1}\cos(\mu\ln x)+c_{2}\text{ sen }(\mu\ln x)].
$$

Raízes iguais

Se na solução da equação (18) temos duas raízes iguais então encontramos apenas uma solução da equação diferencial e podemos usar o método da variação dos parâmetros para achar uma segunda solução e, daí, a solução geral. Substituindo \(y=x^{r}\) na equação diferencial
$$
L[y]=x^{2}y^{\prime\prime}+\alpha xy^{\prime}+\beta y=0
$$

obtemos, como antes,
$$
r^{2}+(\alpha-1)r+\beta=0.
$$
Se \(\Delta=(\alpha-1)^{2}-4\beta=0\) então temos uma raíz dupla que denotaremos simplesmente por \(r=(1-\alpha)/2,\) e uma única solução \(y_{1}=x^{r}\). Procuramos então encontrar uma solução da forma
$$
y(x)=u(x)x^{r}.
$$

Substituindo as derivadas
$$
y^{\prime}=u^{\prime}x^{r}+rux^{r-1},
$$

$$
y^{\prime\prime}=u^{\prime\prime}x^{r}+2ru^{\prime}x^{r-1}+r(r-1)ux^{r-2},
$$

na equação diferencial inicial, e dividindo por \(x^{r}\), obtemos
$$
u^{\prime\prime}x^{2}+u^{\prime}x(2r+\alpha)+u[r(r-1)+\alpha r+\beta]=0.
$$

Observamos agora que o primeiro parênteses, \(2r+\alpha=1\), dado o valor de \(r\) neste caso, enquanto o colchete se anula devido à equação (18). Dividindo a equação restante por \(x\) temos
$$
u^{\prime\prime}x+u^{\prime}=0.
$$

Fazendo a substituição \(\phi=u^{\prime}\) chegamos a uma equação de primeira ordem
$$
\phi^{\prime}x+\phi=0,
$$

com soluções
$$
\phi=\frac{B}{x}.
$$

Integramos para obter
$$
u=B\int\frac{dx}{x}=A+B\ln x,
$$

e portanto
$$
y(x)=ux^{r}=Ax^{r}+Bx^{r}\ln x.
$$
Assim, além da solução já conhecida, \(y_{1}=x^{r_{1}}\), encontramos outra solução
$$
y_{2}(x)=x^{r_{1}}\ln x.
$$

Estas soluções são l.i. pois
$$
W(y_{1},y_{2})=x^{r_{1}}(r_{1}x^{r_{1}-1}\ln x+x^{r_{1}-1})-r_{1}x^{r_{1}-1}x^{r_{1}}\ln x=x^{2r_{1}-1}\neq0,
$$

sempre lembrando que estamos estudando apenas as soluções no intervalo \(x\gt 0\). Concluimos portanto que
$$
y(x)=c_1 x^{r_1} + c_2 x^{r_1}\ln x.
$$
é a solução geral da equação de Euler para o caso de raízes iguais.

Método Alternativo

Já encontramos a solução para o caso de raízes iguais. Descreveremos, no entanto, um procedimento diferente que servirá para introduzir técnicas de manipulação com operadores que podem ser úteis e poderosas em diversas situações. Queremos resolver a equação
$$
L[y]=x^{2}y^{\prime\prime}+\alpha xy^{\prime}+\beta y=0.
$$

Suponha agora que tomamos \(y=x^{r}\) com \(r\) variando continuamente. Com esta escolha obtemos
$$
L[x^{r}]=x^{r}[r(r-1)+\alpha r+\beta].
$$

Se existirem duas raízes reais distintas podemos escrever a equação do segundo grau dentro dos colchetes como
$$
r(r-1)+\alpha r+\beta=(r-r_{1})(r-r_{2}),
$$

onde \(r_{1}\) e \(r_{2}\) são as raízes, ou seja
$$
L[x^{r}]=x^{r}[(r-r_{1})(r-r_{2})].
$$

Observe que \(L[x^{r}]\) somente se anula se \(r=r_{1}\) ou \(r=r_{2}\). Se houver uma só raiz, \(r_{1}=r_{2}\), então
$$
L[x^{r}]=x^{r}(r-r_{1})^{2}.
$$

Agora derivamos os dois lados da última equação em relação a \(r\)

(19)

$$
\frac{\partial}{\partial r}L[x^{r}]=\frac{\partial}{\partial r}[x^{r}(r-r_{1})^{2}].
$$

Vamos tratar primeiro o lado esquerdo da equação (19). Notamos que o operador \(L\) é construído com derivadas primeira e segunda em \(x\) e que podemos inverter a ordem de derivação
$$
\frac{\partial}{\partial r}\frac{\partial}{\partial x}\rightarrow\frac{\partial}{\partial x}\frac{\partial}{\partial r},
$$

se as funções envolvidas são contínuas com derivadas contínuas. Como consequência
$$
\frac{\partial}{\partial r}L[x^{r}]=L\left[\frac{\partial}{\partial r}x^{r}\right]=L[x^{r}\ln x].
$$

Quanto ao lado direito de (19) temos
$$
\frac{\partial}{\partial r}[x^{r}(r-r_{1})^{2}]=x^{r}\ln x(r-r_{1})^{2}+2x^{r}(r-r_{1}).
$$

Concluimos, portanto, que
$$
L[x^{r}\ln x]=x^{r}\ln x(r-r_{1})^{2}+2x^{r}(r-r_{1}).
$$

Em particular, se tomarmos \(r=r_{1}\) então teremos encontrado a outra solução para a equação diferencial proposta, pois
$$
L[x^{r_{1}}\ln x]=0.
$$

Isto indica que, além da solução já conhecida, \(y_{1}=x^{r_{1}}\), também
$$
y_{2}(x)=x^{r_{1}}\ln x
$$

é uma solução. Já mostramos que estas soluções são linearmente independentes.

Soluções para o caso \(x \lt 0\):

Relembramos aqui que apenas obtivemos as soluções para o intervalo \(x\gt 0\). Retornando mais uma vez à equação de Euler
$$
L[y]=x^{2}y^{\prime\prime}+\alpha xy^{\prime}+\beta y=0,
$$

estamos agora interessados em encontrar soluções para \(x\lt 0\). Para isto fazemos uma troca de variáveis
$$
x=-\xi,\;\;\xi\gt 0
$$

e com esta troca temos uma nova função
$$
y(x)=\mu(\xi).
$$

As derivadas das duas funções se relacionam da seguinte forma
$$
\frac{dy}{dx}=\frac{d\mu}{d\xi}\frac{d\xi}{dx}=-\frac{d\mu}{d\xi},
$$

$$
\frac{d^{2}y}{dx^{2}}=\frac{d}{d\xi}\left(-\frac{d\mu}{d\xi}\right)\frac{d\xi}{dx}=+\frac{d^{2}\mu}{d\xi^{2}}.
$$

Com estas derivadas reescrevemos a equação diferencial de Euler em termos da função \(\mu\) e da variável \(\xi\),
$$
L[\mu]=\xi^{2}\mu^{\prime\prime}+\alpha\xi\mu^{\prime}+\beta\mu=0,\xi\gt 0,
$$

cujas soluções já conhecemos e são idênticas às soluções anteriores se tomarmos \(x\) com sinal invertido.

Juntando as duas partes obtemos as soluções gerais para todos os valores de \(x\), exceto para \(x=0\):

\(r_{1}\neq r_{2}\), reais \(y(x)=c_{1}|x|^{r_{1}}+c_{2}|x|^{r_{2}},\)
\(r_{1,2}=\lambda\pm i\mu\) complexos \(y(x)=|x|^{\lambda}[c_{1}\cos(\mu\ln|x|)+c_{2}\text{ sen }(\mu\ln|x|)]\),
\(r_{1}=r_{2}=r\) iguais \(y(x)=(c_{1}+c_{2}\ln|x|)|x|^{r}\)

Exercícios 6.

1. \(x^{2}y^{\prime\prime}+4xy^{\prime}+2y=0\)

2. \((x+1)^{2}y^{\prime\prime}+3(x+1)y^{\prime}+3y/4=0 (\text{faça }z=x+1)\)

3. \(x^{2}y^{\prime\prime}-3xy^{\prime}+4y=0\)

4. \(x^{2}y^{\prime\prime}+3xy^{\prime}+5y=0\)

5. \(x^{2}y^{\prime\prime}-xy^{\prime}+y=0\)

6. \((x-1)^{2}y^{\prime\prime}+8(x-1)y^{\prime}+12y=0\)

7. \(x^{2}y^{\prime\prime}+6xy^{\prime}-y=0\)

8. \(2x^{2}y^{\prime\prime}-4xy^{\prime}+6y=0\)

9. \(x^{2}y^{\prime\prime}-5xy^{\prime}+9y=0\)

10. \((x-2)^{2}y^{\prime\prime}+5(x-2)y^{\prime}+8y=0\)

11. \(x^{2}y^{\prime\prime}+2xy^{\prime}+4y=0\)

12. \(x^{2}y^{\prime\prime}-4xy^{\prime}+4y=0\)

Problema de valor inicial:

13. \(2x^{2}y^{\prime\prime}+xy^{\prime}-3y=0, \; y(1)=1,\; y^{\prime}(1)=4\)

14. \(4x^{2}y^{\prime\prime}+8xy^{\prime}+17y=0, \;y(1)=2, \;y^{\prime}(1)=-3\)

15. \(x^{2}y^{\prime\prime}-3xy^{\prime}+4y=0, \;y(-1)=2, \;y^{\prime}(1)=3\)

16. \(x^{2}y^{\prime\prime}+3xy^{\prime}+5y=0, \;y(1)=1, \;y^{\prime}(1)=-1\)

Algumas Soluções:

1. \(y=c_{1}x^{-1}+c_{2}x^{-2}\)
2. \(y=c_{1}|x+1|^{-1/2}+c_{2}|x+1|^{-3/2}\)
3. \(y=c_{1}x^{2}+c_{2}x^{2}\ln x\)
4. \(y=c_{1}x^{-1}\cos(2\ln x)+c_{2}x^{-1}\text{ sen }(2\ln x)\)
5. \(y=c_{1}x+c_{2}x\ln x\)
6. \(y=c_{1}(x-1)^{-3}+c_{2}(x-1)^{-4}\)
7. \(y=c_{1}|x|^{\frac{1}{2}\left(-5+\sqrt{29}\right)}+c_{2}|x|^{\frac{1}{2}\left(-5-\sqrt{29}\right)}\)
8. \(y=c_{1}|x|^{3/2}\cos\left(\frac{\sqrt{3}}{2}\ln x\right)+c_{2}|x|^{3/2}\text{ sen }\left(\frac{\sqrt{3}}{2}\ln x\right)\)
9. \(y=c_{1}x^{3}+c_{2}x^{3}\ln x\)
10. \(y=\frac{c_{1}}{(x-2)^{2}}\cos[2\ln(x-2)]+\frac{c_{2}}{(x-2)^{2}}\cos[2\ln(x-2)]\)
11. \(y=\frac{c_{1}}{\sqrt{|x|}}\cos\left(\frac{\sqrt{15}}{2}\ln x\right)+\frac{c_{2}}{\sqrt{|x|}}\text{ sen }\left(\frac{\sqrt{15}}{2}\ln x\right)\)
12. \(y=c_{1}x+c_{2}x^{4}\)
13. \(y=2x^{3/2}-1/x\)
14. \(y=2x^{-1/2}\cos(2\ln x)-x^{-1/2}\text{ sen }(2\ln x)\)
15. \(y=2x^{2}-7x^{2}\ln x\)
16. \(y=x^{-1}\cos(2\ln x)\)

Equações não Homogêneas

Considere uma equação diferencial não homogênea

(20)

$$
L[y]=y^{\prime\prime}+f(x)y^{\prime}+g(x)y=r(x),
$$
onde \(f(x)\), \(g(x)\) e \(r(x)\) são contínuas em um intervalo aberto \(I\). A equação homogênea associada é
$$
L[y]=y^{\prime\prime}+f(x)y^{\prime}+g(x)y=0,
$$

onde fizemos \(r(x)=0\). Podemos enunciar os seguintes teoremas:

Teorema 4: Sejam \(Y_{1} \text{ e } Y_{2}\) duas soluções da equação não homogênea (20). Então \(Y_{1}-Y_{2}\) é uma solução da equação homogênea associada \(L[y]=0\). Se, além disto, \(\{y_{1}, y_{2}\} \) é um conjunto fundamental de soluções de (20), então \(Y_{1}-Y_{2}=c_{1}y_{1}+c_{2}y_{2}\).

Demonstração: Como \(Y_{1}\) e \(Y_{2}\) são soluções de (20) então \(L[Y_{1}]=r(x),\;L[Y_{2}]=r(x)\), sendo \(L\) um operador linear temos que
$$
L[Y_{1}-Y_{2}]=L[Y_{1}]-L[Y_{2}]=r(x)-r(x)=0
$$

e, portanto, \(Y_{1}-Y_{2}\) é solução da homogênea associada. Como todas as soluções da homogênea podem ser escritas como uma combinação linear das soluções fundamentais então \(Y_{1}-Y_{2}=c_{1}y_{1}+c_{2}y_{2}\).

Teorema 5: A solução geral da equação não homogênea (20) pode ser escrita como
$$
y(x)=c_{1}y_{1}+c_{2}y_{2}+Y
$$

onde \(Y\) é uma solução qualquer da equação (20).

Demonstração: Pela linearidade de \(L\) temos que
$$
L[y(x)]=L[c_{1}y_{1}+c_{2}y_{2}+Y]=c_{1}L[y_{1}]+{Lc}_{2}[y_{2}]+L[Y]=r(x).
$$

Resumindo, seguimos os seguintes passos para encontrar a solução geral de uma equação diferencial não homogênea:

i Encontramos o conjunto fundamental de soluções da equação homogênea associada, \(\{y_{1},\;y_{2}\}\),
ii Encontramos uma solução da não homogênea, \(Y\),
iii Construimos a solução geral, \(\,y(x)=c_{1}y_{1}+c_{2}y_{2}+Y\).

Método dos Coeficientes Indeterminados

Já possuimos um método para encontrar soluções gerais para todas as equações de segunda ordem homogêneas com coeficientes constantes, para as equações de Euler e ainda para equações com coeficientes não constantes mais gerais, se conhecermos uma de suas soluções. Necessitamos agora estudar formas de obtenção de uma solução para as equações não homogêneas.

Em alguns casos podemos fazer uma hipótese inicial para a forma da solução procurada. Assim, por inspecção, supomos que a solução tem a forma de uma certa função com constantes indeterminadas, e a substituimos na equação diferencial com o propósito de determinar estas constantes. Geralmente, se a forma adotada como tentativa não for suficientemente ampla para acomodar a solução procurada, teremos que recomeçar com outra tentativa mais geral que a primeira. Alguns exemplos servirão para esclarecer melhor o método.

Exemplo 21. Vamos procurar, pelo método dos coeficientes indeterminados, a solução geral para a não homogênea

(21)

$$
y^{\prime\prime}+y^{\prime}=2\text{ sen }3x.
$$
Façamos primeiro a seguinte tentativa: \(y=A\text{ sen }3x\). Suas derivadas são
$$
y^{\prime}=3A\cos3x,\;y^{\prime\prime}=-9A\text{ sen }3x.
$$

Substituindo as derivadas na equação diferencial temos
$$
-9A\text{ sen }3x+3A\cos3x=2\text{ sen }3x,
$$

que não admite solução para a constante \(A\). Temos que tentar encontrar uma solução mais geral que esta. Tentaremos então
$$
Y=A\cos3x+B\text{ sen }3x,
$$

cujas derivadas são
$$
Y^{\prime}=-3A\text{ sen }3x+3B\cos3x,
$$

$$
Y^{\prime\prime}=-9A\cos3x-9B\text{ sen }3x.
$$

Substituindo na equação diferencial temos
$$
-9A\cos3x-9B\text{ sen }3x-3A\text{ sen }3x+3B\cos3x=2\text{ sen }3x.
$$

Agrupando termos em seno e cosseno temos
$$
(-9A+3B)\cos3x-(9B+3A)\text{ sen }3x=2\text{ sen }3x,
$$

e portanto, o sistema para \(A\) e \(B\) e sua respectiva solução,
$$
-9A+3B =0,\;\;3A+9B =-2\;\;\; \Rightarrow A=-\frac{1}{15},\;\;B=-\frac{1}{5}.
$$

Tendo encontrado as constantes \(A\) e \(B\) temos uma solução para a equação não homogênea (21),
$$
Y(x)=-\frac{1}{15}\cos3x+-\frac{1}{5}\text{ sen }3x.
$$

A equação homogênea associada \(y^{\prime\prime}+y^{\prime}=0\) tem solução geral
$$
y_{h}(x)=c_{1}+c_{2}e^{-x}.
$$

A solução geral do problema é
$$
y(x)=y_{h}(x)+Y(x)=c_{1}+c_{2}e^{-x}-\frac{1}{15}\cos3x+-\frac{1}{5}\text{ sen }3x.
$$

Exemplo 22. Encontre a solução geral para a equação não homogênea
$$
y^{\prime\prime}+2y^{\prime}=3+4\text{ sen }2x.
$$
Precisamos da solução geral da equação homogênea associada
$$
y^{\prime\prime}+2y^{\prime}=0,
$$

que pode ter sua ordem reduzida por meio da escolha
$$
\phi=y^{\prime},\;\phi^{\prime}=y^{\prime\prime}.
$$

A equação e sua solução são:
$$
\phi^{\prime}=-2\phi\Rightarrow\int\frac{d\phi}{\phi}=-2\int dx\Rightarrow\phi=ce^{-2x}.
$$

Daí obtemos \(y\) por integração
$$
y_{h}=c\int e^{-2x}dx=c_{1}e^{-2x}+c_{2}.
$$

Como solução para a não homogênea tentamos a seguinte função
$$
Y=Ax+B\text{ sen }2x+C\cos2x,
$$

com derivadas primeira e segunda respectivamente,
$$
Y^{\prime}=A+2B\cos2x-2C\text{ sen }2x,
$$

$$
Y^{\prime\prime}=-4B\text{ sen }2x-4C\cos2x.
$$

Substituindo na equação diferencial obtemos
$$
2A+(-4B-4C)\text{ sen }2x+(-4C+4B)\cos2x=3+4\text{ sen }2x.
$$

Comparando o termo constante e aqueles em seno e cosseno temos o sistema
$$
\left. \begin{array}{r} 2A =3, \\ B+C =-1 \\ -C+B=0 \end{array} \right\}
\Rightarrow A=\frac{3}{2},\;\;B=-\frac{1}{2},\;\;C=-\frac{1}{2}.
$$

A solução geral para a equação (26) é, portanto,
$$
y(x)=c_{1}e^{-2x}+c_{2}+\frac{3}{2}x-\frac{1}{2}(\text{ sen }2x+\cos2x).
$$

Exemplo 23. Encontre a solução geral para
$$
u^{\prime\prime}=\cos\omega_{0}t,
$$

onde \(u\) é função da variável independente \(t\) e \(\omega_{0}\) é uma constante. A equação homogênea tem solução
$$
u_{h}(t)=c_{1}+c_{2}t.
$$

Para a não homogênea tentamos
$$
U=A\cos\omega_{0}t+B\text{ sen }\omega_{0}t,
$$

com derivada segunda
$$
U^{\prime\prime}=-\omega_{0}^{2}U=-\omega_{0}^{2}A\cos\omega_{0}t-\omega_{0}^{2}B\text{ sen }\omega_{0}t.
$$

Então, substituindo na equação diferencial obtemos
$$
-\omega_{0}^{2}A\cos\omega_{0}t-\omega_{0}^{2}B\text{ sen }\omega_{0}t=\cos\omega_{0}t,
$$

e, portanto, \(B=0\), \(A=-1/\omega_{0}^{2}.\) A solução geral é
$$
u(t)=c_{1}+c_{2}t-\frac{1}{\omega_{0}^{2}}\cos\omega_{0}t.
$$

Observe que neste caso poderíamos ter tomado, logo no início, a solução tentativa \(U=A\cos\omega_{0}t\).

Exemplo 24. Encontre uma solução para a equação não homogênea
$$
y^{\prime\prime}-3y^{\prime}-4y=4x^{2}.
$$

Como solução para a não homogênea tentamos um polinômio de mesmo grau que \(r(x)\)
$$
Y=Ax^{2}+Bx+C,
$$

com derivadas
$$
Y^{\prime}=2Ax+B,Y^{\prime\prime}=2A.
$$

Substituindo \(Y,\;Y^{\prime}\) e \(Y^{\prime\prime}\) na equação diferencial obtemos
$$
2A-6Ax-3B-4Ax^{2}-4Bx+4C=4x^{2}.
$$

Igualando os coeficientes de termos de mesma ordem em \(x\) chegamos ao sistema
$$
\left. \begin{array}{r} -4A-4 =0 \\ -6A-4B =0 \\ 2A-3B-4c =0 \\ \end{array} \right\}
\Rightarrow A=-1,\;\;B=\frac{3}{2},\;\;c=-\frac{13}{8}.
$$

A solução da não homogênea é
$$
Y(x)=-x^{2}+\frac{3}{2}x-\frac{13}{8}.
$$

Esta solução deve ser somada à solução da homogênea associada para a obtenção da solução geral.

Exemplo 25. Encontre uma solução para a equação não homogênea
$$
2y^{\prime\prime}+3y^{\prime}+y=x^{2}+3\text{ sen }x.
$$

Para a não homogênea tentamos
$$
Y=Ax^{2}+Bx+C+D\text{ sen }x+E\cos x,
$$

observando que todas as cinco constantes \(A, B, C, D \text{ e } E\) são necessárias, como se pode verificar por tentativa direta de substituição. Suas derivadas são
$$
Y^{\prime}=2Ax+B+D\cos x-E\text{ sen }x,
$$

$$
Y^{\prime\prime}=2A-D\text{ sen }x-E\cos x,
$$

que, substituidas na equação diferencial resultam em
$$
4A-2D\text{ sen }x-2E\cos x+6Ax+3B+3D\cos x-3E\text{ sen }x+
$$
$$
+Ax^{2}+Bx+c+D\text{ sen }x+E\cos x=x^{2}+3\text{ sen }x.
$$

Reunindo os termos de mesma ordem em \(x\), os coeficientes de seno e cosseno chegamos ao sistema abaixo, e sua solução,
$$
\left. \begin{array}{r} 4A+3B+C=0 \\ 6A+B =0 \\ A=1 \\ \end{array} \right\}
\Rightarrow A=1,\;\;B=-6,\;\;C=14.
$$
$$
\left. \begin{array}{r} -3E-D=3 \\ 3D-E=0 \end{array} \right\}
\Rightarrow D=-\frac{3}{10},E=-\frac{9}{10}.
$$

A solução da não homogênea é
$$
Y(x)=x^{2}-6x+14-\frac{3}{10}\text{ sen }x-\frac{9}{10}\cos x.
$$

Uma observação final será útil para a solução de equações não homogêneas com o termo \(r(x)\) composto pela soma de duas ou mais funções. Suponha a equação diferencial na forma
$$
L[y]=r_{1}(x)+r_{2}(x).
$$
Observe que, se \(Y_{1}\) é solução de \(L[y]=r_{1}(x)\) e \(Y_{2}\) é solução de \(L[y]=r_{2}(x)\), então \(Y_{1}+Y_{2}\) é solução particular da equação (27) pois
$$
L[Y_{1}+Y_{2}]=L[Y_{1}]+L[Y_{2}]=r_{1}(x)+r_{2}(x).
$$

Exercícios 7.

1. \(y^{\prime\prime}-2y^{\prime}-3y=3e^{2x}\)

2. \(y^{\prime\prime}+2y^{\prime}+5y=3\text{ sen }2x\)

3. \(y^{\prime\prime}-2y^{\prime}-3y=-3xe^{-x}\)

4. \(y^{\prime\prime}+2y^{\prime}=3+4\text{ sen }2x\)

5. \(y^{\prime\prime}+9y=x^{2}e^{3x}+6\)

6. \(y^{\prime\prime}+2y^{\prime}+y=2e^{-x}\)

7. \(2y^{\prime\prime}+3y^{\prime}+y=x^{2}+3\text{ sen }x\)

8. \(y^{\prime\prime}+y=3\text{ sen }2x+x \cos2x\)

9. \(y^{\prime\prime}+\omega_{0}^{2}y=\cos\omega x,\omega^{2}\neq\omega_{0}^{2}\)

10. \(y^{\prime\prime}+\omega_{0}^{2}y=\cos\omega_{0}x\)

11. \(y^{\prime\prime}+y^{\prime}+4y=2\text{senh}\,x\)

12. \(y^{\prime\prime}-y^{\prime}-2y=\cosh2x\)

13. \(y^{\prime\prime}+y^{\prime}-2y=2x,\;\,y(0)=0,\;\,y^{\prime}(0)=1\)

14. \(y^{\prime\prime}+4y=x^{2}+3e^{x},\;\,y(0)=0,\;\,y^{\prime}(0)=2\)

15. \(y^{\prime\prime}-y^{\prime}+2y=xe^{x}+4,\;\,y(0)=1,\;\,y^{\prime}(0)=1\)

16. \(y^{\prime\prime}-2y^{\prime}-3y=3xe^{2x},\;\,y(0)=1,\;\,y^{\prime}(0)=0\)

17. \(y^{\prime\prime}+4y=3\text{ sen }2x,\;\,y(0)=2,\;\,y^{\prime}(0)=-1\)

18. \(y^{\prime\prime}+2y^{\prime}+5y=4e^{-x}\cos2x,\;\,y(0)=1,\;\,y^{\prime}(0)=0\)

Algumas Soluções:

1. \(y=c_{1}e^{3x}+c_{2}e^{-x}-e^{2x}\)
2. \(y=c_{1}e^{-x}\cos2x+c_{2}e^{-x}\text{ sen }2x+\frac{3}{17}\text{ sen }2x-\frac{12}{17}\cos2x\)
3. \(y=c_{1}e^{3x}+c_{2}e^{-x}+\frac{3}{16}xe^{-x}+\frac{3}{8}x^{2}e^{-x}\)
4. \(y=c_{1}+c_{2}e^{-2x}+\frac{3}{2}x-\frac{1}{2}\text{ sen }2x-\frac{1}{2}\cos2x\)
5. \(y=c_{1}\cos3x+c_{2}\text{ sen }3x+\frac{1}{162}(9x^{2}-6x+1)e^{3x}+\frac{2}{3}\)
6. \(y=c_{1}e^{-x}+c_{2}xe^{-x}+x^{2}e^{-x}\)
7. \(y=c_{1}e^{-x}+c_{2}e^{-x/2}+x^{2}-6x+14-\frac{3}{10}\text{ sen }x-\frac{9}{10}\cos x\)
8. \(y=c_{1}\cos x+c_{2}\text{ sen }x-\frac{1}{3}x\cos2x-\frac{5}{9}\text{ sen }2x\)
9. \(y=c_{1}\cos\omega_{0}x+c_{2}\text{ sen }\omega_{0}x+(\omega_{0}^{2}-\omega^{2})^{-1}\cos\omega x\)
10. \(y=c_{1}\cos\omega_{0}x+c_{2}\text{ sen }\omega_{0}x+(1/2\omega_{0})x\text{ sen }\omega x\)
11. \(y=c_{1}e^{-x/2}\cos\left(\sqrt{15}x/2\right)+c_{2}e^{-x/2}\text{ sen }\left(\sqrt{15}x/2\right)+\frac{1}{6}e^{x}-\frac{1}{4}e^{-x}\)
12. \(y=c_{1}e^{-x}+c_{2}e^{2x}+\frac{1}{6}xe^{2x}+\frac{1}{8}e^{-2x}\)
13. \(y=e^{x}-\frac{1}{2}e^{-2x}-x-\frac{1}{2}\)
14. \(y=\frac{7}{10}\text{ sen }2x-\frac{19}{40}\cos2x-\frac{1}{8}+\frac{3}{5}e^{x}+\frac{1}{4}x^{2}\)
15. \(y=4xe^{x}-3e^{x}+\frac{1}{6}x^{3}e^{x}+4\)
16. \(y=e^{3x}+\frac{2}{3}e^{-x}-\frac{2}{3}e^{2x}-xe^{2x}\)
17. \(y=2\cos2x-\frac{1}{8}\text{ sen }2x-\frac{3}{4}\cos2x\)
18. \(y=e^{-x}\cos2x+\frac{1}{2}e^{-x}\text{ sen }2x+xe^{-x}\text{ sen }2x\)

Método da Variação dos Parâmetros

(6) Supondo que as integrais envolvidas possam ser explicitamente avaliadas. Caso contrário se pode realizar integrações numéricas ou simplesmente obter uma solução formal da qual se pode extrair informações úteis.

O método da variação dos parâmetros para a solução da equações diferenciais não homogêneas, atribuído a Lagrange, é um método mais geral e não implica em prever uma forma apropriada para a solução. Embora geralmente mais trabalhoso que o método anterior ele é também mais poderoso e fornece sempre, em princípio, uma solução(6).

O método consiste no seguinte procedimento: para encontrar uma solução geral para a equação não homogênea
$$
L[y]=y^{\prime\prime}+f(x)y^{\prime}+g(x)y=r(x)
$$

buscamos primeiro uma solução para a homogênea associada, \(L[y]=0\). Digamos que
$$
y_{h}(x)=Ay_{1}(x)+By_{2}(x),
$$

com \( A \text{ e } B\) constantes, seja esta solução. A variação dos parâmetros consiste em substituir as constantes por funções desconhecidas,
$$
A\rightarrow A(x),\;\;B\rightarrow B(x),
$$

o que resulta em uma solução tentativa mais geral que a anterior, sob a forma de

(22)

$$
y(x)=A(x)y_{1}(x)+B(x)y_{2}(x).
$$

Note que com isto estamos introduzindo uma grau de liberdade extra em nosso problema e que uma única equação do tipo não será suficente para determinar univocamente as funções \(A(x)\) e \(B(x)\). Como veremos, usaremos esta liberdade extra para inserir um vínculo ou restrição adicional de forma a simplificar a solução do problema. Omitindo os argumentos das funções, para ter uma notação mais compacta, escrevemos a derivada primeira da solução tentativa:
$$
y^{\prime}=Ay_{1}^{\prime}+A^{\prime}y_{1}+By_{2}^{\prime}+B^{\prime}y_{2}
$$

sobre a qual imporemos o vínculo adicional

(23)

$$
y_{1}A^{\prime}+y_{2}B^{\prime}=0.
$$
Assim resta apenas, para a derivada primeira
$$
y^{\prime}=Ay_{1}^{\prime}+By_{2}^{\prime}
$$

e, consequentemente
$$
y^{\prime\prime}=Ay_{1}^{\prime\prime}+By_{2}^{\prime\prime}+A^{\prime}y_{1}^{\prime}+B^{\prime}y_{2}^{\prime}.
$$

Com estas escolhas a equação (22) fica assim
$$
Ay_{1}^{\prime\prime}+By_{2}^{\prime\prime}+A^{\prime}y_{1}^{\prime}+B^{\prime}y_{2}^{\prime}+f(Ay_{1}^{\prime}+By_{2}^{\prime})+g(Ay_{1}+By_{2})=r.
$$

Reagruparemos os termos da seguinte forma
$$
A(y_{1}^{\prime\prime}+fy_{1}^{\prime}+gy_{1})+B(y_{2}^{\prime\prime}+fy_{2}^{\prime}+gy_{2})+A^{\prime}y_{1}^{\prime}+B^{\prime}y_{2}^{\prime}=r,
$$

para ver que a equação se reduz à

(24)

$$
A^{\prime}y_{1}^{\prime}+B^{\prime}y_{2}^{\prime}=r,
$$
uma vez que os termos dentros dos parênteses são nulos já que \(y_{1}\) e \(y_{2}\) são soluções da homogênea associada. Observamos que a escolha particular do vínculo adicional dada por (30) faz com que a derivada segunda de \(y\) contenha apenas termos com derivadas primeiras de \(A\) e \(B\), e que a substituição da solução tentativa na equação diferencial original leva a uma expressão simples (24) que, igualmente, contém apenas \(A^{\prime}\) e \(B^{\prime}\). As equações (23) e (24) devem ser resolvidas simultaneamente. Elas formam um sistema linear algébrico (isto é, não são equações diferenciais) para \(A^{\prime}\) e \(B^{\prime}\). Como último passo encontramos por integração as funções \(A(x)\) e \(B(x)\) e teremos assim resolvido a equação (22).

Exemplo 26. Vamos procurar a solução da equação não homogênea

(25)

$$
y^{\prime\prime}-5y^{\prime}+6y=2e^{x},
$$
pelo método da variação dos parâmetros. Temos que encontrar primeiro a solução geral da homogênea associada, que tem equação característica \(r^{2}-5r+6=0\) cujas raízes são \(r=2\) e \(r=3\). A solução da homogênea é
$$
y_{h}(x)=Ae^{2x}+Be^{3x},
$$
Para a não homogênea tentamos a solução
$$
y(x)=A(x)e^{2x}+B(x)e^{3x},
$$

onde \(A \text{ e } B\) são agora funções, e que tem derivada primeira
$$
y^{\prime}=A^{\prime}e^{2x}+B^{\prime}e^{3x}+2Ae^{2x}+3Be^{3x}.
$$

Introduzindo o vínculo ou restrição
$$
A^{\prime}e^{2x}+B^{\prime}e^{3x}=0
$$

ficamos com
$$
y^{\prime}=2Ae^{2x}+3Be^{3x},
$$

e a derivada segunda:
$$
y^{\prime\prime}=2A^{\prime}e^{2x}+4Ae^{2x}+3B^{\prime}e^{3x}+9Be^{3x}.
$$

Substituindo na equação diferencial e agrupando os termos de forma conveniente temos
$$
A(4e^{2x}-10e^{2x}+6e^{2x})+B(9e^{3x}-15e^{3x}+6e^{3x})+2A^{\prime}e^{2x}+3B^{\prime}e^{3x}=2e^{x}
$$

ou, já que os termos dentro dos parênteses são nulos,
$$
2A^{\prime}e^{2x}+3B^{\prime}e^{3x}=2e^{x}.
$$

Temos portanto o seguinte sistema algébrico e sua solução
$$
\left.
\begin{array}{l}
A^{\prime}e^{2x}+B^{\prime}e^{3x} =0 \\
2A^{\prime}e^{2x}+3B^{\prime}e^{3x} =2e^{x} \\
\end{array}
\right\}
\Rightarrow A^{\prime}=-2e^{-x},\;\;B^{\prime}=2e^{-2x}.
$$

Por integração destas funções obtemos \(A\) e \(B\),
$$
A=-2\int e^{-x}dx=2e^{-x}+c_{1},
$$

$$
B=2\int e^{-2x}dx=-e^{-2x}+c_{2}.
$$

A solução geral da equação (25) é
$$
y(x)=(2e^{-x}+c_{1})e^{2x}+(-e^{-2x}+c_{2})e^{3x}=c_{1}e^{2x}+c_{2}e^{3x}+e^{x}.
$$
Exemplo 27. Para resolver a equação não homogênea

(26)

$$
y^{\prime\prime}+4y^{\prime}+4y=x^{-2}e^{-2x}
$$
procuramos as soluções da homogênea associada, que tem equação característica
$$
r^{2}+4r+4=0
$$

com raíz dupla \(r=-2\). A solução da homogênea é
$$
y_{h}(x)=Ae^{-2x}+Bxe^{-2x},
$$

\(A \text{ e } B\) constantes. Para a não homogênea tentamos a variação dos parâmetros
$$
y(x)=Ae^{-2x}+Bxe^{-2x}
$$

onde agora \(A\) e \(B\) são funções. A derivada primeira é
$$
y^{\prime}=A^{\prime}e^{-2x}-2Ae^{-2x}+B^{\prime}xe^{-2x}+Be^{-2x}-2Bxe^{-2x}.
$$

Introdução a restrição
$$
(A^{\prime}+B^{\prime}x)e^{-2x}=0
$$

obtemos, simplesmente
$$
y^{\prime}=(-2A+B-2Bx)e^{-2x}.
$$

A derivada segunda é
$$
y^{\prime\prime}=(-2A^{\prime}+4A+B^{\prime}-4B-2B^{\prime}x+4Bx)e^{-2x}
$$

Substituindo na equação (20) e realizando os possíveis cancelamentos temos
$$
-2A^{\prime}+B^{\prime}-2B^{\prime}x=x^{-2}.
$$

Resta apenas resolver o sistema
$$
\begin{array}{ll}
A^{\prime}+B^{\prime}x =0 & (a) \\
-2A^{\prime}+B^{\prime}-2B^{\prime}x =x^{-2} & (b)\\
\end{array}
$$

Multiplicando a primeira equação por 2 e somando com a segunda para obtemos
$$
B^{\prime}(1-2x+2x)=x^{-2}\Rightarrow B^{\prime}=x^{-2},
$$

$$
A^{\prime}=-xB^{\prime}=-x^{-1}.
$$

Integrando obtemos \(A\) e \(B\),
$$
A=-\int\frac{1}{x}dx=-\ln x+c_{1},
$$

$$
B=\int\frac{1}{x^{2}}dx=-\frac{1}{x}+c_{2},
$$

e a solução geral de (20) é
$$
y(x)=(-\ln x+c_{1})e^{-2x}+\left(-\frac{1}{x}+c_{2}\right)xe^{-2x}=
$$

$$
=c_{1}e^{-2x}+c_{2}xe^{-2x}-e^{-2x}\ln x-e^{-2x},
$$

ou, ainda,
$$
y(x)=c_{3}e^{-2x}+c_{2}xe^{-2x}-e^{-2x}\ln x,
$$

onde \(c_{3}=c_{1}-1\).

Como será ilustrado no exemplo a seguir, o método da variação dos parâmetros pode ser usado na solução de equações diferenciais com coeficientes não constantes. Vale lembrar que ainda não estudamos uma forma geral para a obtenção de soluções para estas equações mesmo no caso homogêneo, exceto para as equações de Euler. Este estudo será feito no capítulo sobre as soluções em séries de potências.

No exemplo seguinte supomos conhecidas duas soluções l.i. para a equação homogênea associada e, a partir delas, obtemos a solução geral para a não homogênea.

Exemplo 28. Dada a equação de Euler
$$
x^{2}y^{\prime\prime}-2y=3x^{2}-1,
$$
podemos encontrar as soluções da homogênea associada que são \(y_{1}=x^{2}\) e \(y_{2}=x^{-1}\). A partir dai procuramos a sua solução geral. Usando a variação dos parâmetros construimos a solução tentativa
$$
y(x)=A(x)x^{2}+B(x)x^{-1}.
$$

Na derivada primeira
$$
y^{\prime}=A^{\prime}x^{2}+B^{\prime}x^{-1}+2Ax-Bx^{-2},
$$

impomos a restrição

(27)

$$
A^{\prime}x^{2}+B^{\prime}x^{-1}=0,
$$
o que nos deixa com as seguintes derivadas de \(y\),
$$
y^{\prime}=2Ax-Bx^{-2},
$$

$$
y^{\prime\prime}=2A^{\prime}x-B^{\prime}x^{-2}+2A+2Bx^{-3}.
$$

Substituindo na equação diferencial temos

(28)

$$
2A^{\prime}x^{3}-B^{\prime}=3x^{2}-1.
$$
As equações (27) e (28) formam um sistema algébrico para \(A^{\prime}\) e \(B^{\prime}\), com solução
$$
A^{\prime}=\frac{1}{x}-\frac{1}{3x^{3}},\;\;B^{\prime}=\frac{1}{3}-x^{2}.
$$

As funções \(A\) e \(B\) podem ser encontradas por integração direta,
$$
A=\int\left(\frac{1}{x}-\frac{1}{3x^{3}}\right)dx=\ln x+\frac{1}{6x^{2}}+c_{1},
$$

$$
B=\int\left(\frac{1}{3}-x^{2}\right)dx=\frac{1}{3}(x-x^{3})+c_{2}
$$

e, portanto, a solução geral de (*32) é
$$
y(x)=\left(\ln x+\frac{1}{6x^{2}}+c_{1}\right)x^{2}+\left[\frac{1}{3}(x-x^{3})+c_{2}\right]\frac{1}{x}=
$$

$$
=c_{1}x^{2}+c_{2}x^{-1}+x^{2}\left(\ln x-\frac{1}{3}\right)+\frac{1}{2}.
$$

Observamos que \(x^{2}/3\) é uma solução da equação homogênea e não contribui para a solução da não homogênea. Reescrevemos então a solução obtida como
$$
y(x)=c_{3}x^{2}+c_{2}x^{-1}+x^{2}\ln x+\frac{1}{2},
$$

onde \(c_{3}=c_{1}-1/3.\)

Exemplo 29. Dada a equação diferencial

(29)

$$
xy^{\prime\prime}-(1+x)y^{\prime}+y=x^{2}e^{2x}
$$
podemos verificar por substituição que \(y_{1}=1+x\) e \(y_{2}=e^{x}\) são soluções da homogênea asssociada. Usando a variação dos parâmetros procuramos sua solução geral construindo
$$
y(x)=A(1+x)+Be^{x},
$$

onde as funções \(A\) e \(B\) são desconhecidas. Sua derivada primeira é
$$
y^{\prime}=A^{\prime}(1+x)+A+B^{\prime}e^{x}+Be^{x}.
$$

Com a restrição adicional
$$
A^{\prime}(1+x)+B^{\prime}e^{x}=0
$$

ficamos com as seguintes derivadas de \(y\),
$$
y^{\prime}=A+Be^{x},
$$

$$
y^{\prime\prime}=A^{\prime}+B^{\prime}e^{x}+Be^{x}.
$$

Com estas escolhas a equação diferencial fica
$$
x(A^{\prime}+B^{\prime}e^{x}+Be^{x})-(1+x)(A+Be^{x})+A(1+x)+Be^{x}=x^{2}e^{2x}
$$

ou, após os devidos cancelamentos
$$
A^{\prime}+B^{\prime}e^{x}=xe^{2x}.
$$

Desta vez temos o sistema
$$
\begin{array}{l}
A^{\prime}(1+x)+B^{\prime}e^{x}=0 \\
A^{\prime}+B^{\prime}e^{x}=xe^{2x}.\\
\end{array}
$$

Subtraindo a primeira da segunda temos
$$
-A^{\prime}x=xe^{2x}\Rightarrow A^{\prime}=-e^{2x}
$$

e
$$
B^{\prime}e^{x}=-A^{\prime}(1+x)\Rightarrow B^{\prime}=(1+x)e^{x}.
$$

Integramos para obter
$$
A=-\int e^{2x}dx=-\frac{e^{2x}}{2}+c_{1},
$$

$$
B=\int(1+x)e^{x}dx=e^{x}+\int xe^{x}dx.
$$

(7) Lembrando: \(\int udv=uv-\int vdu\).

Podemos resolver esta última integral por partes(7), fazendo
$$
u=x,\;\,du=dx
$$

$$
dv=e^{x}dx,v=e^{x}.
$$

Dai
$$
\int xe^{x}dx=xe^{x}-\int e^{x}dx=e^{x}(x-1).
$$

Assim encontramos
$$
B=e^{x}+e^{x}(x-1)=xe^{x}+c_{2}.
$$

Consequentemente a solução geral da equação (29) é
$$
y(x)=\left(-\frac{e^{2x}}{2}+c_{1}\right)(1+x)+({xe}^{x}+c_{2})e^{x}
$$

$$
=c_{1}(1+x)+c_{2}e^{x}+\frac{1}{2}(x-1)e^{2x}.
$$

Este desenvolvimento é, na prática, a forma usual apropriada para a solução de equações diferenciais usando este método. Apresentamos, no entanto, uma solução formal no teorema seguinte.

Teorema 6: Dada a equação diferencial não homogênea

(30)

$$
L[y]=y^{\prime\prime}+f(x)y^{\prime}+g(x)y=r(x)
$$

onde \(f(x),\;g(x)\text{ e } r(x)\) são funções contínuas em um intervalo aberto \(I\) e \( y_{1}(x), y_{2}(x)\) são soluções linearmente independentes da homogênea \(L[y]=0 \) então uma solução particular de (30) é
$$
Y(x)=-y_{1}(x)\int\frac{y_{2}(x)r(x)}{W(y_{1},y_{2})}dx+y_{2}(x)\int\frac{y_{1}(x)r(x)}{W(y_{1},y_{2})}dx.
$$

A solução geral, já vista em teorema anterior, é
$$
y(x)=c_{1}y_{1}(x)+c_{2}y_{2}(x)+Y(x).
$$

Demonstração: Sabemos que
$$
y_{h}(x)=Ay_{1}(x)+By_{2}(x)
$$

é a solução geral da equação homogênea. Tentamos uma solução sob a forma
$$
y(x)=A(x)y_{1}(x)+B(x)y_{2}(x).
$$

Procedendo como já feito no início desta seção chegamos a uma sistema de equações lineares em \(A^{\prime}\) e \(B^{\prime}\)
$$
y_{1}A^{\prime}+y_{2}B^{\prime} =0
$$
$$
y_{1}^{\prime}A^{\prime}+y_{2}^{\prime}B^{\prime}=r
$$

ou, em notação matricial,
$$
\begin{bmatrix} y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime} \end{bmatrix}
\begin{bmatrix} A^{\prime} \\ B^{\prime} \end{bmatrix}
=
\begin{bmatrix} 0 \\ r \end{bmatrix}
$$

Usando a regra de Cramer obtemos as soluções
$$
A^{\prime}=\frac{\det \begin{bmatrix} 0 & y_{2} \\ r & y_{2}^{\prime} \end{bmatrix}}
{W(y_{1},y_{2})}=\frac{-y_{2}r}{W(y_{1},y_{2})},
$$
$$
B^{\prime}=\frac{\det \begin{bmatrix} y_{1} & 0 \\ y_{1}^{\prime} & r \end{bmatrix}}
{W(y_{1},y_{2})}=\frac{y_{1}r}{W(y_{1},y_{2})},
$$

Observe que o Wronskiano não se anula pois \(y_{1}\) e \(y_{2}\) são l.i.. Integrando chegamos a expressões formais para \(A\) e \(B\),
$$
A=-\int\frac{y_{2}r}{W(y_{1},y_{2})}dx+c_{1},
$$

$$
B=\int\frac{y_{1}r}{W(y_{1},y_{2})}dx+c_{2}.
$$

A solução geral para a equação (30) é
$$
y(x)=c_{1}y_{1}(x)+c_{2}y_{2}(x)-y_{1}(x)\int\frac{y_{2}r}{W(y_{1},y_{2})}dx+y_{2}(x)\int\frac{y_{1}r}{W(y_{1},y_{2})}dx,
$$

sendo que
$$
Y(x)=-y_{1}(x)\int\frac{y_{2}r}{W(y_{1},y_{2})}dx+y_{2}(x)\int\frac{y_{1}r}{W(y_{1},y_{2})}dx
$$

é uma solução particular da não homogênea.

Exercícios 8.

Encontre uma solução particular:

1. \(y^{\prime\prime}-5y^{\prime}+6y=2e^{x}\)

2. \(y^{\prime\prime}-y^{\prime}-2y=2e^{-x}\)

3. \(y^{\prime\prime}+2y^{\prime}+y=3e^{-x}\)

4. \(4y^{\prime\prime}-4y^{\prime}+y=16e^{x/2}\)

Encontre a solução geral:

5. \(y^{\prime\prime}+y=\tan x,\;\,0\lt x\lt\pi/2\)

6. \(y^{\prime\prime}+9y=9\sec^{2}(3x),\;\,0\lt x\lt\pi/6\)

7. \(y^{\prime\prime}+4y^{\prime}+4y=x^{-2}e^{-2x},\;\,x\gt 0\)

8. \(y^{\prime\prime}+4y=3\csc2x,\;\,0\lt x \lt \pi/2\)

9. \(4y^{\prime\prime}+y=2\sec(x/2),\;-\pi \lt x \lt \pi\)

10. \(y^{\prime\prime}-2y^{\prime}+y=e^{x}/(1+x^{2})\)

11. \(y^{\prime\prime}-5y^{\prime}+6y=f(x)\)

12. \(y^{\prime\prime}+4y=f(x)\)

Obs.: Considere que \(f(x)\) é uma função qualquer, nas questões 11 e 12.

Nos problemas seguintes verifique que \(y_{1}\) e \(y_{2}\) são soluções da homogênea associada e encontre uma solução particular da não homogênea:

13. \(x^{2}y^{\prime\prime}-2y=3x^{2}-1,\;\,x\gt 0,\;\,y_{1}=x^{2},\;\,y_{2}=x^{-1}\)

14. \(x^{2}y^{\prime\prime}-x(x+2)y^{\prime}+(x+2)y=2x^{3},x\gt 0,\;\,y_{1}=x,\;\,y_{2}=xe^{x}\)

15. \(xy^{\prime\prime}-(1+x)y^{\prime}+y=x^{2}e^{2x},\;\,x\gt 0,\;\,y_{1}=1+x,\;\,y_{2}=e^{x}\)

16. \((1-x)y^{\prime\prime}+xy^{\prime}-y=2(x-1)^{2}e^{-x},\;\,0 \lt x \lt 1,\;\,y_{1}=e^{x},\;\,y_{2}=x\)

17. \(x^{2}y^{\prime\prime}-3xy^{\prime}+4y=x^{2}\ln x,\;\,x\gt 0,\;\,y_{1}=x^{2},\;\,y_{2}=x^{2}\ln x\)

18. \(x^{2}y^{\prime\prime}+xy^{\prime}+(x^{2}-0,25)y=3x^{3/2}\text{ sen }x,\;x\gt 0,\;y_{1}=x^{-1/2}\text{ sen }x,\;y_{2}=x^{-1/2}\cos x\)

Algumas Soluções:

1. \(Y=e^{x}\)

2. \(Y=-\frac{2}{3}xe^{-x}\)

3. \(Y=\frac{3}{2}x^{2}e^{-x}\)

4. \(Y=2x^{2}e^{x/2}\)

5. \(y=c_{1}\cos x+c_{2}\text{ sen }x-(\cos x)\ln(\tan+\sec x)\)

6. \(y=c_{1}\cos3x+c_{2}\text{ sen }3x+(\text{ sen }3x)\ln(\tan3x+\sec3x)-1\)

7. \(y=(c_{1}+c_{2}x-\ln x)e^{-2x}\)

8. \(y=c_{1}\cos2x+c_{2}\text{ sen }2x+\frac{3}{4}(\text{ sen }2x)\ln(\text{ sen }2x)-\frac{3}{2}x\cos2x\)

9. \(y=c_{1}\cos x/2+c_{2}\text{ sen }x/2+x\text{ sen }x/2+2\ln\cos x/2\)

10. \(y=c_{1}e^{x}+c_{2}xe^{x}-\frac{1}{2}e^{x}\ln(1+x^{2})+xe^{x}\arctan x\)

11. \(y=c_{1}e^{2x}+c_{2}e^{3x}+\int[e^{3(x-t)}-e^{2(x-t)}]f(t)dt\)

12. \(y=c_{1}\cos2x+c_{2}\text{ sen }2x+\frac{1}{2}\int f(t)\text{ sen }2(x-t)dt\)

13. \(Y=\frac{1}{2}+x^{2}\ln x\)

14. \( Y=-2x^{2}\)

15. \(Y=\frac{1}{2}(x-1)e^{2x}\)

16. \(Y=-\frac{1}{2}(2x-1)e^{-x}\)

17. \( Y=\frac{1}{6}x^{2}(\ln x)^{3}\)

18. \( Y=-\frac{3}{2}\sqrt{x}\cos x\).

O Método Complexo

Um pequeno acréscimo pode ser interessante neste ponto no que se refere ao uso das equações diferenciais em aplicações. Um tipo de equação comum em aplicações provenientes da mecânica e dos circuitos elétricos é
$$
Ay^{\prime\prime}+By^{\prime}+cy=r(x)
$$

onde a parte não homogênea \(r(x)\) involve senos e cossenos. Embora estas equações possam ser tratadas por um dos métodos já estudados, vamos considerar uma forma prática para se encontrar uma solução particular usando funções complexas. Faremos isto por meio de exemplos.

Exemplo 30. Considere a equação

(31)

$$
y^{\prime\prime}+y^{\prime}+3y=5\text{ sen }x.
$$
Pelo método dos coeficientes indeterminados fazemos
$$
y_{p}=a\cos x+b\text{ sen }x
$$

e substituimos na equação, para encontrar a solução particular
$$
y_{p}(x)=-\cos x+2\text{ sen }x.
$$

O método complexo consiste em resolver outra equação,
$$
Y^{\prime\prime}+Y^{\prime}+3Y=5e^{ix},
$$

(8) \(\text{Im}[f(x)]\) é a parte imaginária da função complexa \(f\), enquanto \(\text{Re}[f(x)]\) é a parte real.

notando que(8) \(\text{Im}(e^{ix})=\text{ sen }x\). Para esta equação fazemos a tentativa
$$
Y=ke^{ix}.
$$

Substituindo esta função e suas derivadas,
$$
Y^{\prime}=ike^{ix},\;\,Y^{\prime\prime}=-ke^{ix},
$$

na equação (31) temos
$$
-ke^{ix}+ike^{ix}+3ke^{ix}=5e^{ix}
$$

ou seja
$$
k(2+i)=5\Rightarrow k=\frac{5}{2+i}=\frac{5(2-i)}{(2+i)(2-i)}=\frac{10-5i}{5}=2-i.
$$

A solução particular para (31) é, então,
$$
Y_{p}=(2-i)e^{ix}=(2-i)(\cos x+i\text{ sen }x)=2\cos x+\text{ sen }x+i(-\cos x+2\text{ sen }x).
$$

Notamos agora que, para obter a solução da equação original (31), basta tomar a parte imaginária desta última expressão:
$$
y_{p}(x)=\text{Im}(Y_{p})=-\cos x+2\text{ sen }x,
$$
como já esperado.

Exercícios 9.

1. \(y^{\prime\prime}+3y^{\prime}+16y=24\cos4t\)

2. \(y^{\prime\prime}+y^{\prime}+4y=8\text{ sen }2t\)

3. \(y^{\prime\prime}+5y^{\prime}+\frac{1}{8}y=25\cos10t\)

4. \(y^{\prime\prime}+y^{\prime}+9y=-3\text{ sen }3t\)

Algumas Soluções:

1. \(y=2\text{ sen }4t\)

3. \(y=2\) sen \(4t\)

Aplicações

Movimento harmônico simples, forçado ou amortecido

As equações com coeficientes constantes, embora simples, servem como modelo para um grande número de sistemas importantes nas aplicações em física, engenharia e outras áreas. Já mencionamos que um corpo de massa \(m\), preso a uma mola de constante elástica \(k\), sob atrito e sujeito à uma força externa variável \(f(t)\) tem seu movimento descrito por um equação diferencial linear de segunda ordem com coeficientes constantes.

Figura: Sistema massa-mola.

A força que a mola exerce sobre o corpo é dada pela lei de Hooke, \(F_{mola}=-kx\), enquanto o atrito exerce uma força proporcional à sua velocidade e em direção oposta a ela, \(F_{atrito}=-cv\). De acordo com a segunda lei de Newton, \(\sum F=ma\), onde \(\sum F\) é a soma de todas as forças atuando sobre o corpo, ou seja
$$
ma=-cv-kx.
$$

Se além destas forças adicionarmos uma força externa \(f(t)\) provida, por exemplo, por um motor dotado de pistons ou outro mecanismo qualquer de transferência de energia para o sistema corpo-mola, teremos a equação
$$
m\frac{d^{2}x(t)}{dt}+c\frac{dx}{dt}+kx=f(t),
$$

ou, utilizando a notação compacta \(\dot{x}=dx/dt,\) \(\ddot{x}=d^{2}x/dt^{2},\)
$$
m\ddot{x}+c\dot{x}+kx=f(t).
$$

Exemplo 31. Movimento harmônico simples O caso mais simples de interesse é o da mola livre, sem a atuação de forças externas ou atrito. Nesta situação temos

$$
m\ddot{x}+kx=0
$$

cuja solução pode ser obtida substituindo-se \(x=e^{rt}\) na equação diferencial para obter
$$
mr^{2}+k=0\Rightarrow r=\pm i\omega
$$

onde \(\omega=\sqrt{k/m}\) é a frequência natural do sistema. A solução geral é

(32)

$$
x(t)=c_{1}\text{ sen }\omega t+c_{2}\cos\omega t.
$$

Ângulo de fase

As constantes de integração ficam determinadas por meio das condições iniciais como, por exemplo, a posição e a velocidade inicial do corpo. Uma outra forma interessante pode ser obtida para esta solução se definirmos novas constantes \(C\) e \(\delta\) que se relacionam com \(c_{1}\) e \(c_{2}\) de acordo com a figura,

$$
\left\{
\begin{array}{l}
C\cos\delta=c_{1} \\
C\text{ sen }\delta=c_{2}\\
\end{array}
\Rightarrow C=\sqrt{c_{1}^{2}+c_{2}^{2}},\delta=\arctan\left(\frac{c_{2}}{c_{1}}\right).\right.
$$

A equação (32) fica escrita como
$$
x(t)=C(\text{ sen }\omega tcos\delta+\cos\omega t\text{ sen }\delta).
$$

Usamos a fórmula da adição de arco do seno
$$
\text{ sen }(a+b)=\text{ sen }a\cos b+\cos a\text{ sen }b
$$

para escrever
$$
x(t)=C\text{ sen }(\omega t+\delta).
$$
Observe que o gráfico deste movimento, que descreve um movimento harmônico simples, é simplesmente o de um seno (cosseno) com amplitude e fase modificados em relação ao seno (cosseno) puro.

Exemplo 32. Trataremos um exemplo particular da situação descrita no exemplo 1. Um objeto de massa igual a 4 kg está preso a uma mola com constante de Hooke \(k=9\) N/cm sobre uma mesa horizontal sem atrito. No instante \(t=0\) a massa é solta de uma posição inicial afastada 6cm da posição de equilíbrio da mola e com velocidade inicial de 3 cm/s. A equação diferencial que descreve o movimento do objeto é
$$
\ddot{x}=-\omega^{2}x,
$$

onde \(\omega=\sqrt{k/m}=3/2s^{-1}\). Observe que \(\omega\) tem unidades de \(\text{(tempo)}^{-1}\), sendo uma medida de frequência. A solução e sua derivada são, respectivamente,
$$
x(t)=c_{1}\text{ sen }\omega t+c_{2}\cos\omega t,
$$
$$
\dot{x}(t)=c_{1}\omega\cos\omega t-c_{2}\omega\text{ sen }\omega t.
$$

Determinamos agora as constantes \(c_{1}\) e \(c_{2}\) usando as condições iniciais:
$$
x(0)=6cm\Rightarrow c_{2}=6cm,
$$

$$
\dot{x}(0)=\omega c_{1}=3cms^{-1}\Rightarrow c_{1}=2cm.
$$

A solução particular encontrada é
$$
x(t)=2\text{ sen }\frac{3t}{2}+6\cos\frac{3t}{2},
$$

onde o tempo \(t\) é medido em segundos, \(x\) em centímetros. Alternativamente podemos calcular a amplitude da oscilação:
$$
C=\sqrt{c_{1}^{2}+c_{2}^{2}}=\sqrt{40}cm\approx6,3cm
$$

enquanto o ângulo de fase é
$$
\delta=\arctan\left(\frac{c_{2}}{c_{1}}\right)=\arctan(3)\approx1,25\text{rad}.
$$

Portanto, a menos de arredondamentos, a posição é dada por
$$
x(t)\approx6,3\text{ sen }\left(\frac{3t}{2}+1,25\right).
$$

Observe que enquanto \(x\) é dado em centímetros o argumento do seno é adimensional.

Exemplo 33. Movimento amortecido Se o objeto preso a massa está submetido a algum tipo de atrito, por exemplo, por estar se movendo dentro de um meio viscoso ou por ter atrito com a superfície onde está apoiado, então parte da energia do sistema será dissipada por este atrito e a amplitude de oscilação decairá. A força de atrito é geralmente descrita por um termo proporcional à uma potência da velocidade. Tomaremos como exemplo a força de atrito como \(F_{atrito}=-c\dot{x}\), sendo que o sinal negativo indica que esta força age na direção contrária à do movimento. Aplicando a segunda lei de Newton temos
$$
F=-c\dot{x}-kx
$$

ou seja, denotando \(2\lambda=c/m\) e \(\omega=\sqrt{k/m}\)
$$
\ddot{x}+2\lambda\dot{x}+\omega^{2}x=0.
$$
Com esta notação a equação característica é \(r^{2}+2\lambda r+\omega^{2}=0\), com raízes
$$
r_{1}=-\lambda+\sqrt{\lambda^{2}-\omega^{2}};\;\;r_{2}=-\lambda-\sqrt{\lambda^{2}-\omega^{2}}.
$$

O comportamento do sistema pode ser descrito em três casos gerais:

i) Sistema superamortecido, quando \(\lambda^{2}-\omega^{2}\gt 0\). Neste caso o amortecimento \(c\) é grande quando comparado à constante elástica \(k\). A solução não apresenta oscilações, sendo dada por
$$
x(t)=\left(c_{1}e^{\sqrt{\lambda^{2}-\omega^{2}}t}+c_{2}e^{-\sqrt{\lambda^{2}-\omega^{2}}t}\right)e^{-\lambda t}.
$$

ii) Sistema subamortecido, quando \(\lambda^{2}-\omega^{2}\lt 0\). Neste caso o amortecimento \(c\) é pequeno quando comparado à constante elástica \(k\). As raízes da equação características são complexas
$$
r_{1}=-\lambda+i\sqrt{\omega^{2}-\lambda^{2}};\;\,r_{2}=-\lambda-i\sqrt{\omega^{2}-\lambda^{2}},
$$

e a solução é oscilatória, descrita por
$$
x(t)=\left(c_{1}\cos\sqrt{\omega^{2}-\lambda^{2}}t+c_{2}\text{ sen }\sqrt{\omega^{2}-\lambda^{2}}t\right)e^{-\lambda t}.
$$

A amplitude do movimento decresce devido ao fator \(e^{-\lambda t}\), tendendo ao repouso após a passagem de um tempo suficientemente longo.

iii) Sistema criticamente amortecido, quando \(\lambda^{2}-\omega^{2}=0\), representando um caso intermediário entre os dois primeiros casos. A solução é simplesmente
$$
x(t)=(c_{1}+c_{2}t)e^{-\lambda t}.
$$

Observe que esta solução pode ter apenas uma raiz, significando que o objeto pode passar pelo ponto de equilíbrio no máximo uma vez.

Figura: (a) Sistema amortecido (b) Amortecimento crítico (c) Superamortecido

Exemplo 34. Movimento forçado: Além da força restauradora da mola o objeto pode ainda estar submetido a uma força externa \(f(t)\), estando ou não sujeito a efeitos dissipativos de atrito. Teremos neste caso a equação diferencial completa, equação (2). Fazendo as mesmas identificações \(2\lambda=c/m\) e \(\omega_{0}=\sqrt{k/m}\) e denotando agora \(\phi(t)=f(t)/m\) temos a equação não homogênea

(33)

$$
\ddot{x}+2\lambda\dot{x}+\omega_{0}^{2}x=\phi(t),
$$

que pode ser resolvida por qualquer um dos métodos já estudados. Combinações de diferentes valores de \(\lambda\) e \(\omega_{0}\) resultarão em comportamentos diferentes para as soluções do sistema.

Suponhamos inicialmente que não existe amortecimento \((\lambda=0)\) e que a força externa aplicada ao sistema seja oscilatória, na forma de \(\phi(t)=\phi_{0}\cos\omega t\), onde \(\omega\) não é necessariamente a frequência natural do sistema, \(\omega_{0}\). De fato, se \(\omega\neq\omega_{0}\), então a solução geral da equação (33) será
$$
x(t)=c_{1}\text{ sen }\omega_{0}t+c_{2}\cos\omega_{0}t+\frac{\phi_{0}}{(\omega_{0}^{2}-\omega^{2})}\cos\omega t,
$$

onde as constantes de integração são determindas pelas condições iniciais. Se o objeto estiver em repouso e no ponto de equilíbrio da mola no instante inicial então
$$
x(0)=0,\;\;\dot{x}(0)=0
$$

e as constantes serão
$$
c_{1}=0;\;\;c_{2}=\frac{\phi_{0}}{\omega^{2}-\omega_{0}^{2}}.
$$

Usamos a relação trigonométrica
$$
\cos A-\cos B=2\text{ sen }\left(\frac{A+B}{2}\right)\text{ sen }\left(\frac{A-B}{2}\right)
$$

para escrever a solução na forma
$$
x(t)=\frac{\phi_{0}}{\omega_{0}^{2}-\omega^{2}}(\cos\omega t-\cos\omega_{0}t)
$$

que representa uma oscilação de maior frequência \((\omega_{0}+\omega)/2\) modulada por outra de menor frequência \((\omega_{0}-\omega)/2.\) Este fenômeno é denominado de batimento e ocorre, por exemplo, quando duas cordas de um instrumentos musical com frequências próximas, mas não iguais, são tocadas simultaneamente. Como se observa na figura 5 uma oscilação harmônica tem a sua amplitude modulada por outra harmônica de menor frequência.

Figura: Amplitude modulada, batimentos

Um segundo exemplo interessante é o caso de ser a frequência da força externa igual à da frequência natural do sistema. Neste caso o termo não homogêneo \(\phi_{0}\cos\omega t\) é solução da equação homogênea e a solução geral da equação (42) é
$$
x(t)=c_{1}\text{ sen }\omega_{0}t+c_{2}\cos\omega_{0}t+\frac{\phi_{0}}{2\omega_{0}}t\text{ sen }\omega_{0}t,
$$

de onde se observa, no terceiro termo, que o movimento tem amplitude crescente para valores crescentes de \(t\). Este é o chamado fenômeno da ressonância, ilustrado na figura, para um caso particular.

Naturalmente que uma mola sofrendo esticamentos progressivos deixaria de responder de forma linear, como descrito pela lei de Hooke. São conhecidos, no entanto, diversas situações onde o fenômeno da ressonância pode produzir efeitos desastrosos, tais como a completa destruição de uma ponte por efeito da oscilação produzida por ventos ou o rompimento de asas de aviões.

Circuitos RLC

Um circuito contendo um indutor, um capacitor, um resistor e uma fonte ligados em série satisfaz a mesma equação diferencial que os sistemas de osciladores mecânicos já estudados.

Digamos que o resistor tenha resistência de \(R\), medida em omhs (\(\Omega\)), o capacitor seja de \(C\) farads
(\(f\)) e o indutor de \(L\) henrys (\(H\)). Denotando por \(i(t)\) a corrente no circuito, a queda de tensão no resistor é \(V_{1}\), no capacitor \(V_{2}\) e no indutor \(V_{3}\), dadas por
$$
V_{1}=iR,\;\;V_{2}=\frac{1}{C}q,\;\;V_{3}=L\frac{di}{dt},
$$

onde \(q\) é a carga armazenada no capacitor. Pela lei de Kirchoff a soma das voltagens é a voltagem total, ou seja
$$
L\frac{di}{dt}+Ri+\frac{1}{C}q=E(t).
$$

Sabendo que a corrente no circuito é a variação no tempo da carga que flui temos que
$$
i=\frac{dq}{dt}
$$
e, portanto,
$$
L\frac{d^{2}q}{dt^{2}}+R\frac{dq}{dt}+\frac{1}{C}q=E(t),
$$
que é uma equação diferencial idêntica àquela obtida para oscilações mecânicas. Como exemplo da analogia a equação característica do sistema não forçado, \(E(t)=0\), é \(Lr^{2}+Rr+1/C=0.\) Então o circuito é superamortecido se \(R^{2}-4L/C\gt 0,\) é subamortecido se \(R^{2}-4L/C\lt 0\) e crítico se \(R^{2}-4L/C=0.\) Todas as características dos sistemas mecânicas estão presentes nos circuitos RLC, inclusive batimentos e ressonâncias.

Equações de Primeira Ordem

Equações Separáveis

As equações diferenciais de primeira ordem mais simples aparecem sob a forma diretamente integrável. São equações na forma
$$
h(y)y^{\prime}=f(x).
$$
Para resolvê-las tratamos provisoriamente as variáveis \(x\) e \(y\) como sendo ambas independentes. A solução da equação é, exatamente, a descrição da dependência entre \(x\) e \(y\). Primeiro reescrevemos a equação (1) como
$$
h(y)dy=f(x)dx
$$
e em seguida integramos os dois lados da equação
$$
\int h(y)dy=\int f(x)dx.
$$
Destas integrações resulta a solução sob forma implícita ou explícita, sempre envolvendo uma constante de integração. De posse desta técnica vamos tratar novamente o primeiro exemplo resolvido na Introdução.

Exemplo 1. Que função é idêntica à sua derivada? Vamos proceder à separação de variáveis
$$
y^{\prime}=y\Rightarrow\frac{dy}{y}=dx\Rightarrow\int\frac{dy}{y}=\int dx.
$$

y= C ex

Integrando a última equação obtemos
$$
\ln y=x+c,
$$
onde \(c\) é uma constante de integração. Para obter uma solução explícita para \(y(x)\), o que é sempre interessante quando possível, tomamos a exponencial de ambos os lados
$$
e^{\ln y}=e^{x+c}\Rightarrow y(x)=Ce^{x},
$$
onde renomeamos a constante \(e^{c}=C\) para obter uma notação mais enxuta.

A solução encontrada, \(y(x)=Ce^{x}\), é a chamada solução geral do problema. Observe que ela é, para sermos mais exatos, uma família de infinitas soluções, dada a liberdade de se escolher infinitos valores para \(C\). Considerando que \(C\) e \(c\) são ambas constantes desconhecidas não é essencial descrever como as duas se relacionam. Na verdade, na maior parte dos problemas, temos a liberdade para renomear a constante de integração de forma a obter uma solução final sob forma compacta e de fácil utilização.

Exemplo 2. Vamos resolver uma equação separável, desta vez acrescentando uma condição de contorno, o que será usada para determinar um valor para a constante de integração. Considere o problema de contorno para a equação diferencial separável:
$$
xy^{\prime}+y=0,\,\,\,y(1)=1.
$$
Primeiro separamos a equação e a integramos
$$
xdy=-ydx\Rightarrow\frac{dy}{y}=-\frac{dx}{x}\Rightarrow\int\frac{dy}{y}=-\int\frac{dx}{x}
$$
o que resulta em
$$
\ln y=-\ln x+c.
$$

Tomando a exponencial dos dois lados obtemos a solução geral:
$$
y(x)=e^{-\ln x+c}=e^{-\ln x}e^{c}=C(e^{\ln x})^{-1}=Cx^{-1}=\frac{C}{x}.
$$

Para satisfazer a condição de contorno ajustamos a constante C
$$
y(1)=\frac{C}{1}=1\Rightarrow C=1.
$$

A solução particular é, portanto,
$$
y(x)=\frac{1}{x}.
$$

É sempre interessante proceder à verificação da solução encontrada. Como
$$
y(x)=\frac{C}{x}\Rightarrow y^{\prime}=-\frac{C}{x^{2}}.
$$

Substituindo na equação (2)
$$
xy^{\prime}+y=x\left(-\frac{C}{x^{2}}\right)+\frac{C}{x}=0,
$$

o que mostra estar correta a solução encontrada.

Algumas Aplicações

Uma grande quantidade de problemas de natureza prática e aplicada podem ser resolvidos com a técnica vista até este ponto.

Decaimento radioativo Uma substância radioativa se decompõe, transformando-se em outra substância, em uma taxa proporcional à quantidade de massa presente. Matematicamente representamos esta afirmação por meio da equação diferencial
$$
\frac{dm}{dt}=km,
$$
onde \(m(t)\) é a quantidade de massa da substância radioativa para cada instante \(t\). A constante \(k\) é uma característica de cada material, sendo que, quanto maior o seu valor, mais radioativa é a substância e mais rapidamente ela se decompõe. Ela é uma constante negativa, indicando que a quantidade do material original está diminuindo. A meia-vida da substância é definida como o tempo gasto para que metade da substância se decomponha. Pode-se verificar em laboratório que a meia-vida da rádio é de 1.590 anos. Após 100 anos de decomposição quanto restará de rádio na amostra? A equação diferencial (3) é uma equação separável:
$$
\frac{dm}{m}=kdt\Rightarrow m(t)=m_{0}e^{kt},
$$

onde \(m_{0}\), a constante de integração, é a quantidade da substância em \(t=0\). Denotando a meia-vida por \(t_{m}\), temos por definição
$$
m(t_{m})=\frac{1}{2}m_{0}
$$

e, portanto
$$
e^{kt_{m}}=\frac{1}{2}.
$$

Tomando o logaritmo dos dois lados temos
$$
kt_{m}=\ln 0,5
$$

e dai, já que conhecemos a meia-vida, podemos calcular o valor de \(k\), para o rádio
$$
k=\frac{\ln0,5}{t_{m}}=\frac{\ln0,5}{1590}\text{anos}^{-1}\approx-4,36\times10^{-4}\text{anos}^{-1}.
$$

Observe que esta constante tem unidades de \(\text{(tempo)}^{-1}\), condição necessária para que o argumento da exponencial seja adimensional. Com isto descobrimos que, para qualquer instante \(t\) (medido em anos), a quantidade de massa do material radioativo é
$$
m(t)=m_{0}e^{-4,36\times10^{-4}t}.
$$

Ao final de \(100\) anos de decomposição teremos
$$
m(100)=m_{0}e^{-4,36\times10^{-4}\times100}\approx0,957m_{0},
$$

restando, portanto \(\approx95,7\%\) de rádio presente na amostra original. Este é basicamente o método usado para determinação de idade em fósseis e artefatos antigos.

Exemplo 3. Crescimento populacional: Uma cultura de bactérias, por exemplo, cresce com taxa proporcional ao número de bactérias presentes a cada instante. Denotando por \(N(t)\) este número a população deve satisfazer a equação
$$
\frac{dN(t)}{dt}=kN(t),
$$

onde \(k\) é uma constante positiva, para indicar crescimento da população. Esta constante depende do tipo da população considerada e deve ser medida empiricamente. A solução para este problema é
$$
N(t)=N_{0}e^{kt},
$$

onde \(N_{0}\) é a população inicial. Suponha que a observação tenha indicado que, medindo o tempo em horas, a experimentação tenha indicado que, após 1 dia, a população inicial terá se multiplicado por \(1000\), ou seja
$$
N(24)=1000N_{0}.
$$

Podemos então determinar o valor de \(k\)
$$
e^{24k}=1000\Rightarrow24k=\ln1000\approx6,91\Rightarrow k\approx2,88\times10^{-1}\text{horas}^{-1}.
$$

Ao final de \(10\) dias (ou seja, \(240\) horas) existirão
$$
N(240)=N_{0}\exp(240\times2,88\times10^{-1})\approx10^{30}N_{0}
$$

bactérias, um número muito superior que o número inicial! Evidentemente nenhuma população pode crescer indefinidamente nesta taxa exponencial o que indica que este nosso primeiro modelo é demasiamente simplista. Um modelo mais preciso para descrever estas populações foi proposto por Verhuslt, um biólogo e matemático que sugeriu a seguinte equação:
$$
\frac{dN}{dt}=N(a-bN),
$$

onde \(a\) é uma constante indicadora do número de nascimentos e \(b\) do número de óbitos. Esta é também uma equação separável
$$
\frac{dN}{N(a-bN)}=dt
$$

(1) Veja o Apêndice para uma revisão sobre as frações parcias.

que pode ser integrada pelo método das frações parciais1. Notando que
$$
\frac{1}{N(a-bN)}=\frac{1}{a}\frac{1}{N}+\frac{b}{a}\frac{1}{a-bN},
$$

temos
$$
\int\frac{dN}{N(a-bN)}=\int\left[\frac{1}{a}\frac{1}{N}+\frac{b}{a}\frac{1}{a-bN}\right]dN=\frac{1}{a}\ln N-\frac{1}{a}\ln(a-bN)=t+c,
$$

ou ainda
$$
\ln\left(\frac{N}{a-bN}\right)=at+ac\Rightarrow\frac{N}{a-bN}=c_{1}e^{at}.
$$

Escrevendo \(N(0)=N_{0}\) e resolvendo para obter N explicitamente temos
$$
N(t)=\frac{aN_{0}}{bN_{0}+(a-bN_{0})e^{-at}}.
$$

Exercícios 1

Resolva as seguintes equações diferenciais. Considere \(m,\,\,n\) e \(\omega\) constantes.

1. \(y^{\prime}+y=0\) 2. \(y^{\prime}=my/x\)
3. \(y^{\prime}=x^{2}/y\) 4. \(mxy^{\prime}=ny\,\,\,(m\neq0)\)
5. \(yy^{\prime}=\cos^{2}\omega x\) 6. \(y^{\prime}=1+x+y^{2}+xy^{2}\)
7. \(xyy^{\prime}=2(y+1)\) 8. \(y^{\prime}+my+n=0\)
9. \(y^{2}y^{\prime}+x^{2}=0\) 10. \(y^{\prime}+ky=0, \,\,\, y(0)=3\)
11. \(xy^{\prime}=3y,y(2)=-8\) 12. \(y^{\prime}=4x^{3}e^{-y},\,\,\,y(1)=0\)
13. \(xy^{\prime}+y=0\), \(y(1)=1\) 14. \(xyy^{\prime}=y+3,\,\,\,y(1)=0\)
15. \(y^{\prime}+y=0\) 16. \(y^{\prime}=my/x\)

17. (Crescimento exponencial) Em uma cultura de levedo a taxa de transformação por unidade de tempo do fermento ativo é proporcional à quantidade do fermento presente, \(y(t)\). Se \(y(t)\) duplica a cada 30 minutos, quanto fermento haverá depois de 8 horas?


Algumas soluções

2. \(y=cx^{m}\) 4. \(y=cx^{n/m}\) 5. \(y^{2}=x+\frac{1}{2\omega}\text{ sen }\,2\omega x\)
9. \(y^{3}+x^{3}=c\) 10. \(3e^{-kx}\) 13. \(y=1/x\)

Equações Redutíveis à Forma Separável

Pode ocorrer que uma equação diferencial de primeira ordem não seja diretamente separável mas possa ser transformada em uma equação separável por meio de uma substituição apropriada de variáveis. A escolha da substituição nem sempre é simples e, em alguns casos, pode ser necessário um certo trabalho de tentativas e erros para se encontrar a escolha adequada. Mostraremos através de um exemplo o funcionamento do método.

Exemplo 4. Resolva a equação
$$
xy^{\prime}=x+y.
$$

Dividindo os dois lados por \(x\) obtemos
$$
y^{\prime}=1+\frac{y}{x}
$$

o que sugere, como discutiremos a seguir, o uso da seguinte nova variável
$$
u=\frac{y}{x}.
$$

Necessitaremos também conhecer \(y^{\prime}\) em termos de \(u\). Para isto observamos que \(y=ux\) e, portanto, sua derivada é
$$
y^{\prime}=u^{\prime}x+u.
$$

Substituimos \(y\) e \(y^{\prime}\) na equação (4) para obter
$$
u^{\prime}x+u=1+u\Rightarrow du=\frac{dx}{x},
$$

que, após integração, resulta em
$$
u=\ln x+C.
$$

Retornando à variável \(y\) inicial
$$
y=ux=xlnx+Cx,
$$

que é a solução procurada.

No exemplo acima, como acontece em muitos casos, foi possível escrever a equação diferencial sob a forma
$$
y^{\prime}=g\left(\frac{y}{x}\right).
$$

Neste caso, a escolha
$$
u=\frac{y}{x},\,\,\,y^{\prime}=u^{\prime}x+u
$$

transforma a equação diferencial em
$$
u^{\prime}x+u=g(u)
$$

que é separável:
$$
\frac{du}{g(u)-u}=\frac{dx}{x}.
$$

No entanto esta não é a única mudança de variáveis possível, como veremos nos exemplos a seguir.

Exemplo 5. Para resolver a seguinte equação diferencial
$$
(x+1)(y^{\prime}-1)=2(y-x)
$$

introduziremos a nova variável \(u=y-x\). Neste caso temos
$$
y=u+x\Rightarrow y^{\prime}=u^{\prime}+1.
$$

Substituindo na equação (5) e fazendo os devidos cancelamentos temos
$$
(x+1)u^{\prime}=2u\Rightarrow\frac{du}{u}=\frac{2dx}{x}.
$$

Integrando obtemos
$$
ln\,u=2\ln(x+1)+c.
$$

Como uma revisão da álgebra envolvida, faremos com algum detalhe as etapas finais deste problema. Tomando a exponencial dos dois lados da equação anterior temos
$$
u=e^{2\ln(x+1)+c}=C(e^{\ln(x+1)})^{2}=C(x+1)^{2},
$$

onde denotamos \(C=e^{c}\). A solução é
$$
y=C(x+1)^{2}+x,
$$

depois que retornamos para a variável \(y=u+x\).

Exemplo 6. A equação diferencial
$$
xy^{\prime}=e^{-yx}-y
$$
pode ser resolvida através da mudança de variáveis \(y\rightarrow v\) onde \(v=xy\). Com esta escolha temos \( y=\frac{v}{x}\) e, consequentemente,
$$
y^{\prime}=\frac{v^{\prime}x-v}{x^{2}}\Rightarrow xy^{\prime}=\frac{v^{\prime}x-v}{x}
$$

Substituindo na equação (6) temos
$$
\frac{v^{\prime}x-v}{x}=e^{-v}-\frac{v}{x}\Rightarrow v^{\prime}=e^{-v}\Rightarrow e^{v}dv=dx.
$$

Podemos agora integrar os dois lados da equação para obter
$$
e^{v}=x+c\Rightarrow v=\ln(x+c).
$$

Dai encontramos
$$
y(x)=\frac{1}{x}\ln(x+c),
$$

a solução de (6).

Exemplo 7. A equação diferencial
$$
y^{\prime}=\frac{y^{2}+2xy}{x^{2}}=\frac{y^{2}}{x^{2}}+\frac{2y}{x}
$$

pode ser transformada em separável por meio da substituição \(y\rightarrow u\) onde \(u=y/x\). Com esta escolha temos
$$
y=ux\Rightarrow y^{\prime}=u^{\prime}x+u,
$$

e a equação diferencial se torna
$$
u^{\prime}x=u^{2}+u.
$$

Separando as variáveis \(u\) e \(x\) e integrando obtemos
$$
\int\frac{du}{u^{2}+u}=\int\frac{dx}{x}.
$$

Pelo método das frações parciais (consulte o Apêndice para uma revisão sobre as frações parciais) podemos escrever
$$
\frac{1}{u(u+1)}=\frac{1}{u}-\frac{1}{u+1},
$$

e, portanto, a primeira integral pode ser avaliada:
$$
\int\frac{du}{u(u+1)}=\int\left(\frac{1}{u}-\frac{1}{u+1}\right)du=lnu-\ln(u+1)=\ln\left(\frac{u}{u+1}\right).
$$

A solução do problema é dada por
$$
\ln\left(\frac{u}{u+1}\right)=\ln x+c.
$$

Para explicitar a função \(u(x)\) tomamos a exponencial de ambos os lados,
$$
\frac{u}{u+1}=Cx,
$$

onde \(C=e^{c}\), ou, em termos da função \(y(x)\) original,
$$
Cx=\frac{y}{y+x}.
$$

Resolvendo para \(y\) obtemos
$$
y(x)=\frac{Cx^{2}}{1-Cx},
$$
que é a solução de (7).

Exercícios 2

Resolva as equações abaixo. Use a transformação \(u=y/x,\) quando não houver outra sugestão.

1. \(2xyy^{\prime}-y^{2}+x^{2}=0\)

2. \((2x-4y+5)y^{\prime}+x-2y+3=0\), (faça \(u=x-2y+3)\)

3. \(xy^{\prime}={xe}^{-y/x}+y\)

4. \(xy^{\prime}+y+2x=0\)

5. \(x^{2}y^{\prime}+xy=x^{2}+y^{2}\)

6. \(2xyy^{\prime}=3y^{2}+x^{2}\)

7. \(xy^{\prime}-y-(y-x)^{3}=0\)

8. \(y^{\prime}=\frac{y-x}{y+x},\)

9. \(y^{\prime}=\frac{y-x}{y+x+2}\), (faça \(u=y-x\).

10. \((x+1)(y^{\prime}-1)=2(y-x),y(0)=10\). (faça \(y-x=v\)).

11. \(xy^{\prime}=e^{-xy}-y\). (faça \(yx=v\)).


Algumas soluções:

2. \(4x+8y+\ln(4x-8y+11)=c \) 5. \(y=x+x/(c-\ln x)\)
7. \(y=x+x(c-x^{2})^{-1/2}\) 8. \(\ln(x^{2}+y^{2})+2\text{ artg }(y/x)=c \)
11. \(y=x+c(x+1)^{2}\)

Equações Diferenciais Exatas

Para a técnica que se segue é conveniente relembrar o conceito de diferencial de uma função de duas variáveis \(\psi(x,y)\). Para obter uma notação mais compacta usaremos a convenção de denotar derivadas parciais como
$$
\frac{\partial\psi}{\partial x}=\psi_{x},\,\,\,\frac{\partial\psi}{\partial y}=\psi_{y},\,\,\,\frac{\partial^{2}\psi}{\partial x\partial y}=\psi_{yx},
$$

e assim sucessivamente. Com esta notação a diferencial de uma função de duas variáveis pode ser escrita como
$$
d\psi=\frac{\partial\psi}{\partial x}dx+\frac{\partial\psi}{\partial y}dy=\psi_{x}dx+\psi_{y}.
$$
A diferencial representa uma medida de como a função \(\psi\) varia quando suas duas variáveis \(x\) e \(y\) variam infinitesimalmente de modo independente. Em vista desta definição vemos que a diferencial só é nula se a função \(\psi\) for uma constante, ou seja,
$$
d\psi=0\Rightarrow\psi_{x}=0,\,\,\,\psi_{y}=0\Rightarrow\psi=C,
$$

onde \(C\) é uma constante arbitrária.

Exemplo 8. A diferencial da função \(\psi(x,y)=x^{3}y^{2}+\text{ sen }\,x\) é
$$
d\psi=(3x^{2}y^{2}+\cos x)dx+(2x^{3}y)dy
$$

pois suas derivadas parcias são
$$
\psi_{x}=3x^{2}y^{2}+\cos x,\,\,\,\psi_{y}=2x^{3}y.
$$

Assim conhecemos desde já a solução da equação diferencial
$$
(3x^{2}y^{2}+\cos x)+(2x^{3}y)y^{\prime}=0,
$$

que é
$$
x^{3}y^{2}+\text{ sen }\,x=C.
$$

Considere agora uma equação diferencial que se apresenta sob a forma
$$
M(x,y)+N(x,y)y^{\prime}=0.
$$

Podemos reescrevê-la como
$$
M(x,y)dx+N(x,y)dy=0.
$$

Se pudermos identificar o lado esquerdo da expressão acima com a diferencial de alguma função \(\psi\) saberemos que \(d\psi=0\) e, portanto \(\psi=C\) é a solução procurada. Esta identificação é possível se existir uma função \(\psi\) tal que
$$
d\psi=Mdx+Ndy,
$$

e, portanto,
$$
M=\frac{\partial\psi}{\partial x}\equiv\psi_{x},\,\,\,\,N=\frac{\partial\psi}{\partial y}\equiv\psi_{y}.
$$

Podemos descobrir se esta função existe ou não utilizando a seguinte propriedade: se uma função de duas variáveis \(\psi\) e suas derivadas \(\psi_{x},\psi_{y}\), \(\psi_{xy}\) e \(\psi_{yx}\) são contínuas então
$$
\frac{\partial^{2}\psi}{\partial x\partial y}=\frac{\partial^{2}\psi}{\partial y\partial x}.
$$

Em notação mais compacta temos
$$
\psi_{xy}=\psi_{yx},
$$

ou, em termos das funções \(M\) e \(N\) definidas acima,
$$
M_{y}=N_{x}.
$$

(2) Veremos, na próxima seção, que em alguns casos é possível transformar uma equação não exata em uma diferencial exata.

Se a última identidade não é verdadeira a equação não é uma diferencial exata e o método que agora estudamos não é adequado para a sua solução(2). Por outro lado, se a identidade \(M_{y}=N_{x}\) é verdadeira, passamos a procurar a função \(\psi\) cuja diferencial é nula. Para isto usamos
$$
M=\frac{\partial\psi}{\partial x}
$$

que permite encontrar \(\psi\) \((x,y)\) por integração na variável \(x\),
$$
\psi(x,y)=\int M(x,y)dx+h(y).
$$

A função fica conhecida exceto pela existência do termo \(h\) que depende apenas da variável \(y\). Observe que \(h(y)\) faz o papel de uma constante arbitrária em relação à derivação e integração na variável \(x\). Usamos agora a relação \(N=\psi_{x}\). Derivando a expressão (10) em relação à \(y\) devemos obter \(N\).
$$
N=\frac{\partial\psi}{\partial y}=\frac{\partial}{\partial y}\int M(x,y)dx+h^{\prime}(y).
$$

que é uma equação diferencial de primeira ordem,
$$
h^{\prime}=N-\int M_{y}dx,
$$

que nos permite determinar a função \(h\) que é a parte que falta em nossa solução \(\psi\). Observe que o termo de integração \(h\) é de fato função de \(y\) somente pois, derivando a mesma expressão em relação a \(x\) obtemos
$$
\frac{\partial}{\partial x}\left(\frac{\partial h}{\partial y}\right)=N_{x}-M_{y}=0,
$$

uma vez que a equação já foi testada como sendo exata! Portanto a solução de (10) é \(\psi(x,y)=C,\) onde \(C\) é uma constante e
$$
\psi(x,y) =\int M(x,y)dx+\int\left[N(x,y)-\int M_{y}dx\right]dy.
$$

Exemplo 9. Encontre a curva que passa pelo ponto \((1,0)\) e tem inclinação \(y^{\prime}=(1-x)/(1+y)\).

Vamos resolver este problema de valor de contorno pelo método da diferencial exata. Para isto escrevemos a equação sob a forma \(Mdx+Ndy=0\), obtendo
$$
(x-1)dx+(1+y)dy=0.
$$

Identificando \(M\) e \(N\) temos
$$
M=x-1, \;\;M_{y}=0; \;\; N=1+y, \;\;N_{x}=0 \Rightarrow M_{y}=N_{x}
$$

ou seja, verificamos que a equação é uma diferencial exata. Para encontrar \(\psi\) fazemos
$$
\psi=\int Mdx+h(y)=\int(x-1)dx+h(y)=\frac{x^{2}}{2}-x+h(y).
$$

Podemos obter a função \(h(y)\), até aqui desconhecida, derivando em \(y\) a expressão acima e usando \(\psi_{y}=N\).
$$
h^{\prime}(y)=1+y\Rightarrow h(y)=\int(1+y)dy=\left(\frac{y^{2}}{2}+y\right).
$$

Assim encontramos a função \(\psi\) completa. Sabemos que ela é uma constante porque possui diferencial nulo, ou seja
$$
\psi=\frac{x^{2}}{2}-x+\frac{y^{2}}{2}+y=c^{\prime},
$$

ou seja,
$$
x^{2}-2x+y^{2}+2y=c
$$

onde \(c=2c^{\prime}\). Para que a curva passe pelo ponto \((1,0)\) devemos inserir \(x=1\) e \(y=0\) na expressão acima, obtendo um valor para a constante \(c\),
$$
c=1-2=-1\Rightarrow x^{2}+y^{2}-2x+2y+1=0.
$$

Para escrever esta solução em uma forma mais familiar podemos completar quadrados,
$$
(x-1)^{2}+(y+1)^{2}=1,
$$

(3) Consulte o Apêndice.

e descobrimos que o problema do exemplo 9 tem como solução a circunferência com centro em \((1,-1)\) e raio \(1\). A equação (12) é um exemplo de solução implícita para uma equação diferencial. Derivando implicitamente3 esta solução obtemos
$$
2(x-1)+2(y+1)y^{\prime}=0\Rightarrow y^{\prime}=\frac{1-x}{1+y},
$$

o que confirma que essa é a solução correta para o problema!

Exemplo 10. Verifique se a equação diferencial a seguir é exata e, em caso afirmativo, resolva a equação
$$
(e^{x}\text{ sen }\,y-2y\text{ sen }\,x)+(e^{x}\cos y+2\cos x)y^{\prime}=0.
$$

Reescrevemos a equação como
$$
(e^{x}\text{ sen }\,y-2y\text{ sen }\,x)dx+(e^{x}cosy+2\cos x)dy=0,
$$

e realizamos o teste para descobrir se a equação é exata ou não. Neste caso temos
$$
M= e^{x}\text{ sen }\,y-2y\text{ sen}\,x \Rightarrow M_{y}= e^{x}\cos y-2\text{ sen }\,x
$$
$$
N= e^{x}\cos y+2\cos x \Rightarrow N_{x}= e^{x}\cos y-2\text{ sen}\,x,
$$

de onde vemos que \(M_{y}=N_{x}\) e que a equação é exata. Neste caso existe uma função \(\psi\) que satisfaz
$$
d\psi=\frac{\partial\psi}{\partial x}dx+\frac{\partial\psi}{\partial y}dy=Mdx+Ndy,
$$

sendo que \(d\psi=0\) decorre da equação (13). Para encontrar esta função integramos \(\psi_{x}=M\),
$$
\psi=\int Mdx+h(y)=\int(e^{x}\text{ sen }\,y-2y\text{ sen }\,x)dx+h(y)=
$$
$$
=e^{x}\text{ sen }\,y+2y\cos x+h(y).
$$

Como \(\psi_{y}=N\) então derivamos (14),
$$
\psi_{y}=e^{x}\cos y+2\cos x+h^{\prime}(y)=e^{x}\cos y+2\cos x,
$$

de onde obtemos
$$
h^{\prime}(y)=0\Rightarrow h(y)=c^{\prime},
$$

uma constante. A solução é obtida de
$$
d\psi=0\Rightarrow\psi=c,
$$

e, portanto,
$$
e^{x}\text{ sen }\,y+2y\cos x=c.
$$

Note que \(y=0\) também é solução da equação (13).

Exercícios 3

Determine as diferenciais das funções:1. \(\psi=x^{2}+2xy^{2}-\text{ sen }\,(xy)\)

2. \(\psi=e^{x}\cos y+(x-y)^{2}\)

3. \(\psi=\ln(x^{2}+y^{2})-x^{3}+y^{3}\)

Verifique se as seguintes equações são diferenciais exatas e, se forem, determine as soluções:

4. \(4yy^{\prime}+x=0\)

5. \(y\cos(xy)dx+x\cos(xy)dy=0\)

6. \(xdy+2y^{2}dx=0\)

7. \(2\cosh xdx+\text{senh}ydy=0\)

8. \(4\text{ sen }\,ydx+x\cos ydy=0\)

9. \(\left(3x^{2}y+\frac{y}{x}\right)dx+(x^{3}+\ln x)dy=0\)

10. \((x\text{e}^{xy}+2y)y^{\prime}+y\text{e}^{xy}=0\)

11. \(\frac{\cos2y}{x}dx=2\ln x\text{ sen } 2ydy\)

Resolva os problemas de valor inicial (pelo método das diferenciais exatas):

12. \(9(y-1)dy+(x-3)dx=0,\,\,\,y(3)=0\)

13. \(+[x^{2}+\pi\cos(\pi y)]dy=0,\,\,\,y(1)=1\).

14. \((\cos x+y\text{ sen }\,x)dx=\cos xdy,\,\,\,y(\pi)=0\)

15. \(x\exp(x^{2}+y^{2})dx+y[\exp(x^{2}+y^{2})+1]dy=0,\,\,\,y(0)=0\).

Algumas soluções

1. \(\psi=[2x+2y^{2}-y\cos(xy)]dx+[4xy-x\cos(xy)]dy\)
4. \(x^{2}+4y^{2}=c\)
6. \(y=x+c(x+1)^{2}\)
8. Não é exata.
9. \(y=c/(x^{3}+\ln x)\)
10. \(e^{xy}+y^{2}=c\)
12. \(1/9(x-3)^{2}+(y-1)^{2}=1\)
14. \(y=\tan x\)

Fatores Integrantes

Pode ocorrer que uma equação \(M(x,y)dx+N(x,y)dy=0\) não seja uma diferencial exata mas possa ser transformada em exata atraves da multiplicação por um fator \(\mu(x,y)\neq0\). Neste caso buscamos encontrar o fator \(\mu\) de forma que \(\mu M(x,y)dx+\mu N(x,y)dy=0 \) seja uma diferencial exata. \(\mu(x,y)\) é denominado de fator integrante.

Exemplo 11. A diferencial \(xdy-ydx=0 \) não é exata pois
$$
M= -y;\,\,\, N= x \Rightarrow M_{y}= -1 \,\,\, N_{x}= 1 \Rightarrow M_{y}\neq N_{x}.
$$

Multiplicando a expressão (15) por
$$
\mu(x,y)=\frac{1}{x^{2}}
$$

ela se transforma em uma diferencial exata pois a diferencial de \(d(y/x)\) é exatamente
$$
d\left(\frac{y}{x}\right)=\frac{xdy-ydx}{x^{2}}=\mu(xdy-ydx).
$$

A solução da equação acima é, portanto,
$$
\frac{y}{x}=a\Rightarrow y=ax,
$$

que é a equação de uma reta com inclinação indeterminada \(a\) e que passa pela origem.

Naturalmente precisamos de uma técnica para encontrar o fator integrante \(\mu\). Para isto voltamos ao problema geral. Queremos examinar sob que situação existe um fator \(\mu\) tal que

$$
\mu(x,y)M(x,y)dx+\mu(x,y)N(x,y)dy=0
$$
seja uma diferencial exata. Realizando o teste, tal como fizemos na seção anterior, vemos que (16) é exata se
$$
(\mu M)_{y}=(\mu N)_{x}.
$$

Usando a regra da derivada do produto temos
$$
\mu_{y}M+\mu M_{y}=\mu_{x}N+\mu N_{x}.
$$

A condição para que (16) seja exata é
$$
M\mu_{y}-N\mu_{x}+(M_{y}-N_{x})\mu=0,
$$

(4) Observe que o caso em que \(\mu\) é função de \(y\) apenas é análogo.

uma equação diferencial parcial de difícil solução, no caso mais geral. Não é raro, no entanto, que se possa tomar um fator integrante função de apenas uma das variáveis, o que torna o tratamento do problema bem mais simples. Suponha que \(\mu\) é função de \(x\) apenas4. Neste caso, \(\mu_{y}=0\) e a expressão (17) é uma equação ordinária separável para \(\mu\).
$$
\frac{d\mu}{dx}=\frac{M_{y}-N_{x}}{N}\mu.
$$
Observe que o coeficiente de \(\mu\) na equação acima deve ser uma função de \(x\) apenas. Caso contrário a equação (18) não é válida. Desta forma podemos encontrar o fator integrante resolvendo a equação (17), ou seja,
$$
\mu(x)=C\exp\left[\int\frac{M_{y}-N_{x}}{N}dx\right].
$$

Agora \(\mu_{x}=0\) e a expressão (17) nos leva à expressão:
$$
\frac{d\mu}{dy}=\frac{N_{x}-M_{y}}{M}\mu,
$$
com solução
$$
\mu(y)=C\exp\left[\int\frac{N_{x}-M_{y}}{M}dy\right].
$$

Em qualquer um dos casos a constante \(C\) acima não afeta a solução da equação diferencial e, por isto, tomaremos sempre \(C=1\). Encontrado \(\mu\) multiplicamos a equação diferencial por este fator obtendo uma diferencial exata
$$
\mu Mdx+\mu Ndy=\bar{M}dx+\bar{N}dy=0,
$$

onde denotamos \(\bar{M}=\mu M\) e \(\bar{N}=\mu N\), e prosseguimos da mesma forma feita na seção anterior. Embora a nova equação seja uma diferencial exata por construção, é útil verificar que
$$
\bar{M}_{y}=\bar{N}_{x}.
$$

Em seguida encontramos \(\psi\), usando \(\psi_{x}=\bar{M}\),
$$
\psi(x,y)=\int\bar{M}dx+h(y)
$$

e a relação \(\psi_{y}=\bar{N}\) para determinar \(h(y)\) na equação diferencial
$$
\psi_{y} =\frac{\partial}{\partial y}\int\bar{M}dx+h^{\prime}(y).
$$

Exemplo 12. A seguinte equação diferencial,
$$
4xydx+\frac{3}{2}x^{2}dy=0,
$$

não é uma diferencial exata pois
$$
M=4xy\;\;M_{y}=4x;\;\;\;N=\frac{3}{2}x^{2},\; N_{x}=3x \Rightarrow M_{y}\neq N_{x}.
$$

Vamos então determinar o fator integrante para transformá-la em uma equação exata. Este fator deve satisfazer a equação
$$
\mu_{x}=\frac{M_{y}-N_{x}}{N}\mu\Rightarrow\mu_{x}=\frac{2}{3x}\mu,
$$

que é uma equação diferencial separável e de fácil solução,
$$
\frac{1}{\mu}d\mu=\frac{2}{3x}dx,
$$

portanto
$$
\ln\mu=\frac{2}{3}\ln x\Rightarrow\mu=x^{2/3}.
$$

A nova equação diferencial, que deve ser uma diferencial exata, é
$$
x^{2/3}\left(4xydx+\frac{3}{2}x^{2}dy\right)=0.
$$

Usando \(\bar{M}=\mu M\) e \(\bar{N}=\mu N\) observamos que agora temos, de fato, uma diferencial exata pois
$$
\bar{M}=4x^{5/3}y,\;\; \bar{M}_{y}=4x^{5/3}; \;\;\;\bar{N}=\frac{3}{2}x^{8/3},\;\;\bar{N}_{x}=4x^{5/3}\Rightarrow\bar{M}_{y}=\bar{N}_{x}.
$$

Para encontrar \(\psi\) prosseguimos como na seção anterior:
$$
\psi=\int\bar{M}dx+h(y)=4y\int x^{5/3}dx+h(y)=\frac{3}{2}{yx}^{8/3}+h(y),
$$

$$
\psi_{y}=\frac{3}{2}x^{8/3}+h^{\prime}(y)=\bar{N}=\frac{3}{2}x^{8/3}
$$

$$
h^{\prime}(y)=0\Rightarrow h(y)=c_{1}.
$$

Dai, já que \(d\psi=0\), sabemos que \(\psi=c_{2}\), uma outra constante e, portanto
$$
\psi=c_{2}=\frac{3}{2}yx^{8/3}+c_{1}\Rightarrow y=Cx^{-8/3},
$$

onde \(C=2(c_{1}-c_{2})/3.\) Observe que este exemplo foi feito desta forma, procurando-se um fator integrante para transformar a equação em uma diferencial exata, como um exercício. É claro que a mesma solução poderia ser encontrada de modo mais simples notando-se que a equação em questão é diretamente separável:
$$
4xydx+\frac{3}{2}x^{2}dy=0\Rightarrow y^{\prime}=-\frac{8y}{3x},
$$

$$
\frac{y^{\prime}}{y}=-\frac{8}{3x}\Rightarrow y=Cx^{-8/3}.
$$

Exemplo 13. Dada a equação diferencial
$$
\frac{y}{x}+2y^{\prime}\ln x=0,
$$

verificamos que esta não é uma diferencial exata. Para este problema temos
$$
M=\frac{y}{x},\;\; M_{y}=\frac{1}{x};\;\;\;N=2\ln x,\;\;N_{x}=\frac{2}{x} \Rightarrow M_{y}\neq N_{x}.
$$

Vamos procurar, neste caso, um fator integrante dependente de \(y\) apenas. Uma solução dependente de \(x\) é também possível mas um pouco mais complicada, como o leitor pode verificar. Temos então
$$
\mu_{y}=\frac{N_{x}-M_{y}}{M}\mu=\frac{\mu}{y}
$$

com solução \(\mu=y\), a menos de uma constante multiplicativa. A equação diferencial multiplicada por \(\mu\) é
$$
\frac{y^{2}}{x}dx+2y\ln xdy=0,
$$

que é uma diferencial exata pois
$$
\bar{M}=y^{2}/x,\;\; \bar{M}_{y}=2y/x;\;\;\;\bar{N}=2y\ln x,\;\;\bar{N}_{x}=2y/x \Rightarrow\bar{M}_{y}=\bar{N}_{y}.
$$

Temos então que
$$
\psi=\int\bar{M}dx+h(y)=y^{2}\ln x+h(y),
$$

$$
\psi_{y}=\bar{N}\Rightarrow h^{\prime}(y)=0\Rightarrow h(y)=c_{1}.
$$

Lembrando que \(d\psi=0\), temos a solução
$$
\psi=y^{2}\ln xy+c_{1}=c_{2},
$$

ou, simplesmente, fazendo \(C=\sqrt{c_{2}-c_{1,}}\)
$$
y(x)=\pm\frac{C}{\sqrt{\ln x}}.
$$

Exercícios 4

Determine os fatores integrantes e resolva pelo método da diferencial exata:

1. \( 2y^{2}+3xyy^{\prime}=0\)

2. \((y+1)dx-(x+1)dy=0\)

3. \( x\cos ydy-\text{ sen }\,ydx=0\)

4. \( 2xy^{\prime}=-y\)

5. \( 2xy^{\prime}=y\)

6. \( xy^{\prime}\ln x+y=0\)

7. \( \text{ sen }\,ydx+\cos ydy=0\)

8. \( 2\cos x\cos ydx-\text{ sen }\,x\text{ sen }\,ydy=0\)

Usando o mesmo método, resolva os problemas de valor inicial:

9. \( 2ydx+xdy=0,\,\,\,y(2)=-1\)
10. \( \cos ydx-\text{ sen }\,ydy=0,\,\,\,y(0)=\pi\)
11. \( 2ydx-xdy=0,\,\,\,y(1)=2\)
12. \( \cosh ydx+2x\text{ senh }ydy=0,\,\,\,y(1)=0\)


Algumas soluções

1. \( \mu=xy,\,\,\,x^{2}y^{3}=c\), 2. \( \mu=\frac{1}{(x+1)^{2}},\,\,\,y=c(x+1)-1\),
3. \( \mu=\frac{1}{x^{2}} ,\,\,\, \text{ sen } y=cx\), 5. \( \mu=\frac{1}{y^{3}},\,\,\,y=c\sqrt{x}\),
6. \( \mu=\frac{1}{x},\,\,\,y=\frac{c}{\ln x}\), 7. \( \mu=e^{x},\,\,\,e^{x}\text{ sen }\,y=c\),
9. \( \mu=x,\,\,\,x^{2}y=-4\), 10. \(\mu=e^{x},\,\,\,e^{x}{cosy}=-1\).


Exercício Resolvido:

2. Temos que \(M_{y}=1\) e \(N_{x}=-1\) portanto a diferencial não é exata. O fator integrante satisfaz
$$
\mu_{x}=\frac{(My-Nx)}{N}\mu\Rightarrow\frac{d\mu}{\mu}=-\frac{2dx}{x+1},
$$

que pode ser diretamente integrada
$$
\int\frac{d\mu}{\mu}=-\int\frac{2dx}{x+1}\Rightarrow\ln\mu=-2\ln(x+1).
$$

Tomando-se a exponencial dos lados da expressão acima temos \(\mu=(x+1)^{-2}\). Multiplicada por este fator integrante a equação se torna uma diferencial exata pois
$$
\bar{M}=\frac{y+1}{(x+1)^{2}},\,\,\,\overline{M_{y}}=\frac{1}{(x+1)^{2}},\bar{\,\,\,N}=-\frac{1}{(x+1)^ {}},\bar{\,\,\,N}_{x}=\bar{M}_{y}.
$$

Integrando \(\psi_{y}=\bar{N}\) obtemos,
$$
\psi=\int\frac{-1}{(x+1)}dy+h(x)=\frac{-y}{(x+1)}+h(x).
$$

Usamos agora a função \(\psi\) encontrada acima e sua derivada, \(\psi_{x}=\bar{M}\), para encontrar \(h(x)\),
$$
\frac{y}{(x+1)^{2}}+h'(x)=\frac{y+1}{(x+1)^{2}},
$$

ou seja
$$
h^{\prime}=\frac{1}{(x+1)^{2}}\Rightarrow h=-\frac{1}{x+1}.
$$

Sabemos agora que
$$
\psi(x,y)=-\frac{y+1}{x+1}=c,
$$

ou ainda \(y=C(x+1)-1\). Observe que, para encontrar \(\psi\), integramos primeiro em \(y\) e depois em \(x\), para encontrar \(h\). A ordem inversa poderia ter sido também escolhida e, neste caso, com o mesmo nível de dificuldade. Pode ocorrer, no entanto, que uma das abordagens leve a integrais mais simples ou diretas.

Equações Diferenciais Lineares de Primeira Ordem

Com as técnicas que já estudamos temos condições para resolver todas as equações lineares de primeira ordem. Sob a forma mais geral elas podem ser escritas como
$$
y^{\prime}+f(x)y=r(x).
$$
Se \(r(x)=0\) a equação é dita homogênea. Já sabemos resolver, em princípio pelo menos, todas as equações homogêneas por separação de variáveis
$$
y^{\prime}+f(x)y=0\Rightarrow\frac{dy}{y}=-f(x)dx.
$$

Integrando-se esta última chegamos a
$$
y(x)=Ce^{-\int f(x)dx}.
$$

Para a não homogênea, \(r(x)\neq0\), reescrevemos a equação (20) como

$$
(fy-r)dx+dy=0
$$
que não é uma diferencial exata, mas suscetível de ser transformada em exata por meio do fator integrante \(\mu\), obtido de
$$
\frac{d\mu}{dx}=\frac{M_{y}-N_{x}}{N}\mu=f(x)\mu\Rightarrow\frac{d\mu}{\mu}=f(x)dx
$$

cuja solução é
$$
\ln\mu=\int f(x)dx\Rightarrow\mu=\exp\left(\int f(x)dx\right),
$$

onde usamos a notação \(\exp(u)=e^{u}\) para a função exponencial. Denotamos, para obter uma expressão mais condensada,
$$
h(x)=\int f(x)dx,
$$

e multiplicamos a equação (21) pelo fator integrante \(\mu=e^{h}\)
$$
e^{h}(y^{\prime}+fy)=e^{h}r.
$$
Pelo teorema fundamental do cálculo \(h^{\prime}=f\) e
$$
\frac{d}{dx}(ye^{h})=y^{\prime}e^{h}+ye^{h}h^{\prime}=e^{h}(y^{\prime}+fy)=e^{h}r,
$$

e a expressão (23) pode ser escrita como
$$
\frac{d}{dx}(ye^{h})=e^{h}r
$$

que, após integração de ambos os lados resulta em
$$
ye^{h}=\int e^{h}rdx+c.
$$

Assim acabamos de conseguir uma solução geral para todas as equações lineares de primeira ordem,

$$
y(x)=e^{-h}\left[\int e^{h}rdx+c\right],
$$
onde \(h(x)=\int f(x)dx\).

Exemplo 14. A equação diferencial linear não homogênea
$$
y^{\prime}-y=e^{2x},
$$

pode ser por aplicação direta da fórmula (24). Iniciamos por identificar os termos usados na expressão(20). Temos
$$
f(x)=-1,\,\,\,r(x)=e^{2x}
$$

e, portanto
$$
h(x)=\int-dx=-x.
$$

Usando a equação (24) chegamos a
$$
y(x)=e^{x}\left[\int e^{-x}e^{2x}dx+c\right]=Ce^{x}+e^{2x},
$$

que é a solução geral.

Exemplo 15. O problema de valor inicial
$$
\frac{dy}{dx}=\frac{1}{e^{y}-x},\,\,\,y(1)=0.
$$

não é linear se entendido como um equação diferencial para a função \(y(x)\). No entanto podemos igualmente tratá-lo como uma equação para a função \(x(y)\) se invertermos, provisoriamente, o papel das variáveis \(x\) e \(y\). Para isto fazemos
$$
\frac{dx}{dy}=e^{y}-x
$$

ou seja
$$
x^{\prime}+x=e^{y}.
$$

Agora identificamos
$$
f(y)=1,\;\;r(y)=e^{y};\;\;\; \text{ portanto }\; h=\int fdy=y.
$$

A solução geral é
$$
x(y)=e^{-y}\left[\int e^{y}e^{y}dy+C\right]=Ce^{-y}+\frac{1}{2}e^{y}.
$$

Para satisfazer a condição de contorno \(y(1)=0\) substituimos \(x=1\) e \(y=0\) para determinar o valor da constante \(C\),
$$
1=Ce^{0}+\frac{1}{2}e^{0}=C+\frac{1}{2}\Rightarrow C=\frac{1}{2}.
$$

A solução particular é
$$
x(y)=\frac{1}{2}(e^{-y}+e^{y})=\cosh y.
$$

Caso seja necessário a obtenção de uma relação explícita para \(y(x)\) podemos usar a função inversa do cosseno hiperbólico,
$$
y(x)=\cosh^{-1}x=\ln\left(x+\sqrt{x^{2}-1}\right),
$$

válida para \(x\geq1\).

Algumas vezes uma equação diferencial pode ser manipulada e escrita sob forma mais simples, o que facilita a obtenção da solução. Isto é mostrado nos exemplos seguintes.

Exemplo 16. Vamos resolver a equação linear \(xy^{\prime}+y=\text{ sen }\,x\). Observamos primeiro que o lado esquerdo da equação é o diferencial de uma função
$$
d(xy)=(xy^{\prime}+y)dx.
$$

Portanto precisamos apenas integrar \(d(xy)=\text{ sen }\,xdx\) para obter
$$
xy=-\cos x+c
$$

ou ainda,
$$
y(x)=\frac{c}{x}-\frac{\cos x}{x}.
$$

Exemplo 17. Considere o problema de valor inicial
$$
x^{2}y^{\prime}+2xy-x+1=0,y(1)=0.
$$

Observe que
$$
\frac{d}{dx}(x^{2}y)=2xy+x^{2}y^{\prime}
$$

e, portanto, a equação diferencial pode ser reescrita como
$$
d(x^{2}y)=(x-1)dx.
$$

Integrando esta última expressão obtemos
$$
x^{2}y=\frac{1}{2}x^{2}-x+c
$$

ou seja, a solução geral é
$$
y(x)=\frac{c}{x^{2}}-\frac{1}{x}+\frac{1}{2}.
$$

Para satisfazer a condição inicial fazemos \(x=1\)
$$
y(1)=c-1+\frac{1}{2}=0\Rightarrow c=\frac{1}{2},
$$

e concluimos que
$$
y(x)=\frac{1}{2x^{2}}-\frac{1}{x}+\frac{1}{2}
$$

é a solução particular procurada.

Exercícios 5

Encontre as soluções gerais das equações lineares:

1. \( xy^{\prime}+y+4=0\) 2. \( y^{\prime}-4y=2x-4x^{2}\)
3. \( xy^{\prime}+y=2x\) 4. \( y^{\prime}-y=e^{x}\)
5. \( y^{\prime}=2x(y-x)+1\) 6. \( y^{\prime}+2y=\cos x\)
7. \( y^{\prime}-3y=\text{ sen }\,2x\) 8. \( y^{\prime}+2xy=x\)

Resolva os problemas de valor inicial:

9. \( y^{\prime}+2y=3,\,\,\,y(0)=0\) 10. \( xy^{\prime}+y=2x,\,\,\,y(1)=2\)
11. \( y^{\prime}-4y=8x^{2},\,\,\,y(0)=-\frac{1}{4}\) 12. \( y^{\prime}+5y=3e^{x},\,\,\,y(0)=1\)

Algumas soluções

1. \( y=\frac{c}{x}-4\) 2. \( y=ce^{4x}+x^{2}\)
5. \( y=ce^{x^{2}}+x\) 7. \( y=ce^{3x}-\frac{2}{13}\cos2x-\frac{3}{13}\text{ sen }\,2x\)
11. \( y=-\left(2x^{2}+x+\frac{1}{4}\right)\) 12. \( y=\frac{1}{2}(e^{-5x}+e^{x})\)

Variação de Parâmetros

Embora já tenhamos resolvido o problema geral das equações lineares de primeira ordem,
$$
y^{\prime}+f(x)y=r(x),
$$
vamos buscar uma solução alternativa para o mesmo problema denominada variação de parâmetros. Esta é uma técnica extremamente útil em diversas situações no estudo das equações diferenciais de segunda ordem e de ordens superiores e, por isto, convém aprendê-la desde já, dentro deste contexto mais simples. O método consiste em resolver primeiro a equação homogênea
$$
y^{\prime}+f(x)y=0,
$$

cuja solução, já obtida na seção anterior, passaremos a denominar de \(v\),
$$
v=Ce^{-\int f(x)dx},
$$

onde \(C\) é uma constante arbitrária. A variação de parâmetros consiste em permitir que \(C\), em vez de constante, seja uma função desconhecida, digamos
$$
C\rightarrow u(x).
$$

A solução da equação não homogênea será procurada sob a forma
$$
y(x)=u(x)v(x)
$$

que, após derivada e substituída na equação original deverá fornecer uma expressão para a determinação da função desconhecida \(u(x)\). Vamos então implementar este procedimento:
$$
y=uv\Rightarrow y^{\prime}=u^{\prime}v+uv^{\prime},
$$

onde foi usada a regra de derivação de um produto. Substituindo em (25) obtemos
$$
u^{\prime}v+uv^{\prime}+fuv=r,
$$

$$
u^{\prime}v+ u\underbrace{(v^{\prime}+fv)} =r,
$$

notando que a expressão dentro dos parênteses é nula porque \(v\) é solução da equação homogênea. Resta portanto resolver a equação separável
$$
u^{\prime}v=r\Rightarrow u^{\prime}=\frac{r}{v}\Rightarrow u=\int\frac{r}{v}dx+c.
$$

Como a solução da equação é \(y=uv\) temos então que
$$
y=v\left(\int\frac{r}{v}dx+c\right),
$$

a solução geral do problema. Claro que esta solução é idêntica à obtida descrita na seção anterior pelo método das diferenciais exatas. Basta notar que
$$
v=e^{-h}=\exp\left(-\int f(x)dx\right)
$$

é a solução da equação homogênea e portanto
$$
y(x)=e^{-h}\left[\int e^{h}rdx+c\right]
$$

é a solução geral da não homogênea, escrita da mesma forma que antes.

Exemplo 18. Resolva a equação diferencial
$$
xy^{\prime}+y+4=0.
$$

Reescrevemos a equação como
$$
y^{\prime}+\frac{y}{x}+\frac{4}{x}=0.
$$

A homogênea associada é
$$
y^{\prime}+\frac{y}{x}=0,
$$

que é separável e pode ser resolvida da seguinte forma:
$$
\frac{dy}{y}=-\frac{dx}{x}\Rightarrow\ln y=-\ln x+c\Rightarrow y=\frac{C}{x}.
$$

A variação de parâmetros consiste em tomar \(C\) como \(u\), uma função de \(x\). Procuramos então uma solução da forma
$$
y(x)=\frac{u}{x}
$$

cuja derivada, usando a regra de derivação de um quociente, é
$$
y^{\prime}=\frac{u^{\prime}x-u}{x^{2}}.
$$

Substituimos \(y\). \(y^{\prime}\) na equação diferencial para obter
$$
x\left(\frac{u^{\prime}x-u}{x^{2}}\right)+\frac{u}{x}+4=0\Rightarrow\frac{u^{\prime}x-u}{x}+\frac{u}{x}+4=0\Rightarrow u^{\prime}+4=0,
$$

ou seja
$$
u=-4x+c.
$$

A solução geral é
$$
y(x)=\frac{u}{x}=\frac{c}{x}-4.
$$

Exercícios 6

Encontre as soluções gerais, usando variação dos parâmetros:

1. \( y^{\prime}+y=2\) 2. \( (x+4)y^{\prime}+3y=3\)
3. \( y^{\prime}-y=3e^{x}\) 4. \( y^{\prime}-y=e^{x}\)


Algumas soluções:

1. \(y=ce^{-x}+2\) 3. \(y=(3x+c)e^{x}\)

Equações de Bernoulli

Nesta seção descrevemos métodos de solução para dois tipos de equações diferenciais que são não lineares no caso mais geral e que surgem no contexto de aplicações. Para ambos os casos tratamos de exemplos onde os problemas se reduzem a equações diferenciais lineares não homogêneas e, como um exercício, nós as resolvemos pelo método da variação dos parâmetros.

Uma equação de Bernoulli é uma equaçao diferencial do tipo
$$
y^{\prime}+P(x)y=Q(x)y^{n}.
$$

Se \(n=0\) ou \(n=1\) ela é uma equação linear, de primeira ordem, que pode ser tratada pelos métodos já estudados. Para \(n>1\) ela é uma equação não linear que pode, no entanto, ser transformada em uma equação linear através de uma troca de variáveis \(y\rightarrow v\), dada por \(v=y^{1-n}\), como passaremos a mostrar. Multiplicamos primeiro a equação (26) por \(y^{-n}\) obtendo
$$
y^{\prime}y^{-n}+P(x)y^{1-n}=Q(x).
$$

Fazemos agora a troca de variáveis sugerida,
$$
v=y^{1-n}\Rightarrow v^{\prime}=(1-n)y^{-n}y^{\prime}\Rightarrow y^{\prime}y^{-n}=\frac{v^{\prime}}{1-n}
$$

para chegar a
$$
\frac{v^{\prime}}{1-n}+Pv=Q,
$$

que é uma equação diferencial linear de primeira ordem, não homogênea, que pode ser resolvida por um dos dois métodos já estudados.

Exemplo 19. Vamos resolver a equação diferencial
$$
y^{\prime}-\frac{y}{x}=-\frac{y^{2}}{x}.
$$

Note que esta é uma equação diferencial de Bernoulli com
$$
n=2,\,\,\,Q(x)=P(x)=-\frac{1}{x}.
$$

Façamos então a mudança de variáveis, usando a nova variável
$$
v=y^{(1-2)}=\frac{1}{y},
$$
e sua derivada
$$
v^{\prime}=-\frac{y^{\prime}}{y^{2}}.
$$

Dividindo a equação (27) por \(y^{2}\) temos
$$
\frac{y^{\prime}}{y^{2}}-\frac{1}{xy}=-\frac{1}{x},
$$

onde substituimos a nova variável para chegar a
$$
v^{\prime}+\frac{v}{x}=\frac{1}{x}.
$$

Para resolver esta equação linear poderíamos simplesmente aplicar a equação (24) . Mas, como um exercício, nós a resolveremos pelo método da variação dos parâmetros. Para isto encontramos primeiro a solução da homogênea
$$
v^{\prime}+\frac{v}{x}=0\Rightarrow\frac{dv}{v}=-\frac{dx}{x}\Rightarrow v=\frac{C}{x}.
$$

Tentamos uma solução da não homogênea sob a forma
$$
v=\frac{u}{x},\,\,\,v^{\prime}=\frac{u^{\prime}x-u}{x^{2}}.
$$

Substituindo na equação diferencial
$$
\frac{u^{\prime}x-u}{x^{2}}+\frac{u}{x^{2}}=\frac{1}{x}\Rightarrow u^{\prime}=1\Rightarrow u=x+c,
$$

ou, em termos de \(v\),
$$
v=\frac{u}{x}=\frac{c}{x}+1.
$$

Finalmente retornamos à função \(y(x)\), relacionada a \(v\) por meio de (28),
$$
y(x)=\frac{1}{v}=\frac{x}{c+x}.
$$
Sugestão: Derive esta solução e verifique se ela satisfaz a equação (27)

Equação de Ricatti

As equações diferenciais de Ricatti são equações do tipo
$$
y^{\prime}=A(x)y^{2}+B(x)y+C(x).
$$

Podemos distinguir alguns casos:

i. Se \(A(x)=0\) a equação é linear.

ii. Se \(C(x)=0\) a equação de Ricatti se reduz a
$$
y^{\prime}-B(x)y=A(x)y^{2}
$$

que é uma equação de Bernoulli com \(n=2,\,\,P(x)=-B(x)\), \(Q(x)=A(x)\), tratada na seção anterior.

iii. No caso geral, suponha conhecida uma solução \(y_{1}\). Então a equação (29) pode ser reduzida a uma equação linear por meio de uma troca de variáveis \(y\rightarrow v\) dada por
$$
y=y_{1}+\frac{1}{v}.
$$

Para encontrar a equação linear associada derivamos \(y\),
$$
y^{\prime}=y_{1}^{\prime}-\frac{v^{\prime}}{v^{2}}
$$

e calculamos \(y^{2}\)
$$
y^{2}=\left(y_{1}+\frac{1}{v}\right)^{2}=y_{1}^{2}+2y_{1}\frac{1}{v}+\frac{1}{v^{2}}.
$$

Em seguida substituimos \(y,y^{2}\) e \(y^{\prime}\) na equação original para obter
$$
y_{1}^{\prime}-\frac{v^{\prime}}{v^{2}}=Ay_{1}^{2}+2Ay_{1}\frac{1}{v}+\frac{A}{v^{2}}+By_{1}+\frac{B}{v}+C.
$$

Observando que, como \(y_{1}\) é solução da equação de Ricatti então
$$
y_{1}^{\prime}=Ay_{1}^{2}+By_{1}+C.
$$

Cancelando estes termos na equação acima resta apenas
$$
-\frac{v^{\prime}}{v^{2}}=2Ay_{1}\frac{1}{v}+\frac{A}{v^{2}}+\frac{B}{v}
$$

ou seja
$$
v^{\prime}+(2Ay_{1}+B)v+A=0,
$$

que é uma equação linear, cuja solução sabemos calcular.

Exemplo 20. A equação diferencial
$$
y^{\prime}=(1-x)y^{2}+(2x-1)y-x.
$$
é uma equação se Ricatti onde identificamos
$$
A(x)=(1-x),\,\,\,B(x)=(2x-1),\,\,\,C(x)=-x.
$$

Sabendo que \(y_{1}=1\) é uma solução (como se pode verificar por substituição) procuramos uma solução sob a forma
$$
y=y_{1}+\frac{1}{v}=1+\frac{1}{v}.
$$

Com esta escolha para \(v\) calculamos \(y^{\prime} \text{ e } y^{2}\),
$$
y^{\prime}=\frac{v^{\prime}}{v^{2}},\,\,\,y^{2}=\left(1+\frac{1}{v}\right)^{2}=1+\frac{2}{v}+\frac{1}{v^{2}},
$$

que, após substituição na equação (30) resulta em
$$
\frac{v^{\prime}}{v^{2}}=(1-x)\left(1+\frac{1}{v}\right)^{2}+(2x-1)\left(1+\frac{1}{v}\right)-x.
$$

Simplificando esta equação obtemos a equação linear esperada,
$$
v^{\prime}+v=x-1.
$$
Mais uma vez temos que resolver uma equação não homogênea, e o faremos pelo método da variação de parâmetros. A equação homogênea e sua solução são, respectivamente,
$$
v^{\prime}+v=0,\,\,\,v=Ce^{-x}.
$$

Buscaremos então uma solução da forma
$$
v=\phi e^{-x},
$$

onde \(\phi\) é uma função de \(x\). Usamos a regra da derivada do produto para calcular
$$
v^{\prime}=\phi^{\prime}e^{-x}-\phi e^{-x}.
$$

Substituindo \(v\) e \(v^{\prime}\) na equação (31) chegamos a uma equação diferencial para \(\phi\)
$$
\phi^{\prime}e^{-x}=x-1,
$$

cuja solução é
$$
\phi=\int(x-1)e^{x}dx=e^{x}(x-1)+c.
$$

Isto representa uma solução para \(v\)
$$
v=\phi e^{-x}=(x-1)+ce^{-x},
$$

que, por sua vez, é ainda uma função auxiliar para a solução do problema. A solução final fica descrita por
$$
y=1+\frac{1}{v}=1+\frac{1}{ce^{-x}+x-1}.
$$

Exercícios 7

Resolva as equações:1. De Bernoulli: \(y^{\prime}+\frac{y}{x}=xy^{2}\).

2. De Bernoulli: \(y^{\prime}=y(xy^{3}-1)\).

3. De Ricatti: \(y^{\prime}=2-2xy+y^{2}\), observando que \(y_{1}=2x\) é uma solução.

4. De Ricatti: \(y^{\prime}=-\frac{4}{x^{2}}-\frac{1}{x}y+y^{2},\,\,\,y_{1}=\frac{2}{x}\).

Método Iterativo de Picard

Vimos, nas seções anteriores, que uma equação diferencial linear de primeira ordem sempre admite solução. Estudamos também algumas técnicas de solução que podem ser usadas para equações não lineares, por exemplo, as diferenciais exatas. No entanto, se uma equação diferencial não se apresenta sob formas conhecidas sua solução pode ser bastante difícil e existem equações que não podem ser resolvidas por nenhum dos métodos padronizados. Por outro lado, em diversas aplicações, uma solução aproximada talvez seja suficiente. Além disto, do ponto de vista teórico, o simples conhecimento de que existe uma solução pode ser útil. O método iterativo de Picard é uma forma de se obter soluções com a aproximação que se fizer necessária.

Pretendemos resolver um problema de valor inicial do tipo
$$
y^{\prime}=f(x,y),\,\,\,y(x_{0})=y_{0}.
$$
Pelo tereoma fundamental do cálculo sabemos que
$$
y(x)=\int_{x_{0}}^{x}f[t,y(t)]dt+y_{0},
$$
como pode ser facilmente verificado:
$$
y(x_{0})=y_{0},
$$

$$
y^{\prime}(x)=\frac{d}{dx}\left\{ \int_{x_{0}}^{x}f[t,y(t)]dt+y_{0}\right\} =f(x,y).
$$

Podemos obter uma primeira aproximação para a solução da equação (32) fazendo \(y_{1}=y_{0}\) na integral (33)
$$
y_{1}(x)=\int_{x_{0}}^{x}f[t,y_{0}]dt+y_{0}.
$$

Uma segunda aproximação é obtida tomando \(y=y_{1}\),
$$
y_{2}(x)=\int_{x_{0}}^{x}f[t,y_{1}(t)]dt+y_{0},
$$

e assim sucessivamente, através de passos iterativos que fornecem uma solução cada vez mais precisa. No n-ésimo passo temos
$$
y_{n}(x)=\int_{x_{0}}^{x}f[t,y_{n-1}(t)]dt+y_{0}.
$$

Pode-se mostrar que a sequência
$$
y_{1}(x),\,\,\,y_{2}(x),\cdots,\,\,\,y_{n}(x),\cdots
$$

converge para \(y(x)\) sob condições bastante gerais.

Exemplo 21. Considere o problema de valor inicial, cuja solução conhecemos,
$$
y^{\prime}=y,\,\,\,y(0)=1.
$$

Observe primeiro que
$$
y_{0}=1,\,\,\,x_{0}=0,\,\,\,f(x,y)=y,\,\,\,f(t,y_{0})=y_{0}=1.
$$

Pela fórmula (33), em primeira aproximação
$$
y_{1}(x)=\int_{0}^{x}dt+1=x+1.
$$

Etapas sucessivas fornecem
$$
y_{1}(x)=\int_{0}^{x}(t+1)dt+1=\frac{x^{2}}{2}+x+1,
$$

$$
y_{2}(x)=\int_{0}^{x}\left(\frac{t^{2}}{2}+t+1\right)dt+1=\frac{x^{3}}{2.3}+\frac{x^{2}}{2}+x+1,
$$

$$
y_{3}(x)=\int_{0}^{x}\left(\frac{t^{3}}{2.3}+\frac{t^{2}}{2}+t+1\right)dt+1=\frac{x^{4}}{2.3.4}+\frac{x^{3}}{2.3}+\frac{x^{2}}{2}+x+1,
$$

o que já nos permite prever qual será o n-ésimo passo:
$$
y_{n}(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}\frac{x^{4}}{4!}+\cdots+\frac{x^{n}}{n!}.
$$

Esta sequência de funções tende a
$$
\lim_{n\rightarrow\infty}y_{n}=\sum_{k=0}^{\infty}\frac{x^{k}}{k!}=e^{x},
$$

(5) Veja o Apêndice para uma revisão sobre expansões de funções em séries de Maclaurin e Taylor.

que, como já sabíamos, é a solução para o problema proposto. Neste caso a seqüência converge para uma função elementar cuja expansão de Maclaurin5 é conhecida.

Exemplo 22. Vamos aplicar o método de Picard ao problema
$$
y^{\prime}=2xy+1,\,\,\,y(0)=0.
$$

Identificando os termos necessários ao desenvolvimento
$$
y_{0}=0,\,\,\,x_{0}=0,\,\,\,f(x,y)=2xy+1,\,\,\,f(t,y_{0})=2ty_{0}+1=1,
$$

podemos encontrar em primeira aproximação
$$
y_{1}(x)=\int_{0}^{x}dt=x.
$$

Observando que
$$
f[t,y_{1}(t)]=f[t,t]=2t^{2}+1
$$

encontramos nas iterações seguintes
$$
y_{2}(x) =\int_{0}^{x}(2t^{2}+1)dt=\frac{2x^{3}}{3}+x,
$$
$$
f[t,y_{2}(t)]=2t\left(\frac{2t^{3}}{3}+t\right)+1=\frac{4t^{4}}{3}+2t^{2}+1,
$$
$$
y_{3}(x)=\int_{0}^{x}\left(\frac{4t^{4}}{3}+2t^{2}+1\right)dt=\frac{4x^{5}}{3.5}+\frac{2x^{3}}{3}+x,
$$
$$
f[t,y_{3}(t)]=2t\left(\frac{4t^{5}}{3.5}+\frac{2t^{3}}{3}+t\right)+1=\frac{8x^{6}}{3.5}+\frac{4x^{4}}{3}+2x^{2}+1
$$
$$
y_{4}(x)=\int_{0}^{x}\left(\frac{8t^{6}}{3.5}+\frac{4t^{4}}{3}+2t^{2}+1\right)dt=\frac{8x^{7}}{3.5.7}+\frac{4x^{5}}{3.5}+\frac{2x^{3}}{3}+x.
$$

Vemos que a cada nova iteração acrescentamos um termo à nossa solução aproximada. A solução exata é a série
$$
y(x)=x+\frac{2x^{3}}{3}+\frac{2^{2}x^{5}}{3.5}+\frac{2^{3}x^{7}}{3.5.7}+\cdots
$$

Fica como um exercício, proposto na lista abaixo, a demonstração de que esta série é a expansão de Maclaurin da função
$$
y(x)=e^{x^{2}}\int_{0}^{x}e^{-t^{2}}dt.
$$

Exercícios 8

Use o método de Picard para determinar soluções aproximadas de:

1. \(y^{\prime}=1+y^{2},\,\,\,y(0)=0\) 2. \(y^{\prime}=2xy, \,\,\,y(0)=1\)
3. \(y^{\prime}=x+y, \,\,\,y(0)=1\) 4. \(y^{\prime}=x+y, \,\,\,y(0)=-1\)
5. \(y^{\prime}=xy, \,\,\,y(0)=2\) 6. \(y^{\prime}=2y, \,\,\,y(0)=-1 \)
7. \(y^{\prime}-xy-2x+x^{3}=0, \,\,\,y(0)=0\) 8. \(y^{\prime}-2xy+1=0, \,\,\,y(0)=0 \)
9. \(y^{\prime}=xy+1, \,\,\,y(0)=0\) 10. \(y^{\prime}+y^{2}-x=0, \,\,\,y(0)=0,5\)

11. Mostre que a série, solução do exemplo 2, é a expansão de Maclaurin da função \(y(x)=e^{x^{2}}\int_{0}^{x}e^{-t^{2}}dt\).

Existência e Unicidade

Um problema importante associado às equações diferenciais é o que se refere a existência e unicidade das soluções. Sob que condições um problema de valor inicial
$$
y^{\prime}=f(x,y),\,\,\,y(x_{0})=y_{0}
$$

admite uma solução e quando esta solução é única? As respostas para estas perguntas estão nos dois teoremas seguintes.

Teorema 1. (Existência): Se \(f(x,y)\) é contínua em todos os pontos do retângulo
$$
R=\left\{ \left(x,y\right)\in R^{2},\,\,\left|x-x_{0}\right| \lt a,\,\,\left|y-y_{0}\right|\lt b\,\right\}
$$

sendo, portanto, limitada em \(R\), ou seja, \(|f(x,y)|\leq K\) em \(R\), então o problema de valor inicial (34) possui pelo menos uma solução definida, no mínimo, para todo \(x\) no intervalo \(|x-x_{0}|\lt m\), onde \(m\) é o menor entre os dois valores \(a\) e \(b/K\).

Observe que esta solução pode ser obtida pelo método iterativo de Picard, como o limite da sequência \(y_{0,}\,y_{1},\,y_{2},\cdots, \, y_{n}\), onde
$$
y_{n}(x)=\int_{x_{0}}^{x}f[t,y_{n-1}(t)]dt+y_{0}.
$$

Figura 2:
\(\left\{ \left(x,y\right)\in R^{2},\,\,\left|x-x_{0}\right| \lt a,\,\,\left|y-y_{0}\right| \lt b\right\} \).

Teorema 2. (Unicidade): Se \(f(x,y)\) e \(f_{y}\) são funções contínuas em \(R\) (portanto limitadas) i. e.,
$$
\left|f(x,y\right|\leq K,\,\,\:\left|f_{y}\right|\leq K
$$
para pontos em \(R\), então o problema de valor inicial (34) admite uma única solução definida, no mínimo, em todo \(x\), \(|x-x_{0}|\lt m\).

Os dois teoremas juntos garantem que, dadas as condições enunciadas, existe uma única solução para o problema em (34). A demonstração destes teoremas está além do escopo deste texto.

Equações Diferenciais Ordinárias

Equações Diferenciais são equações matemáticas onde as incógnitas são funções, expressas por meio de suas derivadas e outras funções.

Elas são extremamente úteis para a descrição de fenômenos naturais e das aplicações das teorias na ciência e tecnologia e desempenham um papel fundamental na matemática, física, nas diversas áreas da engenharia, economia e biologia.

Suas soluções são funções que satisfazem as equações e alguns valores de contorno, que são especificações de certos pontos específicas destas soluções. Somente as equações diferenciais mais simples admitem soluções fechadas sob a forma das funções elementares conhecidas. Outras podem ser resolvidas por métodos de recorrência e, ainda, alguns problemas podem ser simplificados apensa pelo conhecimento de propriedades das soluções, mesmo que uma forma fechada não possa ser encontrada.

Com o advento dos computadores modernos sempre é possível se encontrar soluções numéricas para um problema, com níveis de precisão arbitrários, o que é suficiente para a maioria das aplicações práticas.