Para que serve a Matemática?

Os professores de matemática hoje se deparam com uma tarefa difícil: a motivação de seus alunos para os tópicos mais áridos desta ciência. Este problema tem diversas causas que vão desde os problemas com a qualidade geral do ensino até, por exemplo, a crença de que “está tudo pronto”, de que nada mais resta a desenvolver ou a descobrir. É comum ouvir reclamações de que um determinado cálculo pode ser realizado rapidamente em um computador e que, portanto, não seria necessário aprender a utilizar aquela técnica. No entanto sabemos que a tecnologia progride a passos rápidos e que o volume de artigos e novas idéias científicas nunca foi tão grande como hoje. Por isto, procurando contribuir para um melhor entendimento de nosso propósito como professores e estudantes de matemática, me proponho perguntar: por que devemos estudar matemática? Para que serve, afinal, a matemática?


Em primeiro lugar a matemática serve para descrever o mundo de uma forma rigorosa e precisa. Ela é uma linguagem, uma parte essencial na formação de modelos. Um modelo é um conjunto de definições e conceitos que busca descrever de maneira tão completa e fidedigna quanto possível o mundo natural ou uma parte dele, ou ainda processos artificiais criados pela crescente complexidade dos relacionamentos humanos. Esses modelos, além de serem tão completos quanto possível e possuírem coerência lógica, devem ser testados, comparados com o sistema real que ele pretende descrever por meio da observação ou da experimentação. Em caso de disparidades entre a descrição e a observação empírica o modelo deverá ser refeito e aperfeiçoado, ou mesmo abandonado se necessário.

Modelos são representações e não o objeto ou sistema de objetos descritos. Eles podem ser muito simples, como o modelo que representa o conjunto dos números naturais, {1, 2, 3, …}. Estes números foram usados, entre outras coisas, para contar quantas cabeças de gado um homem primitivo tinha e como ele poderia troca-las por alimentos ou outros bens. Nesta contagem ele pode ter usado pedrinhas (daí a palavra cálculo) para representar seus animais, estabelecendo uma relação biunívoca entre animais e pedras. Se possuía menos que uma dezena de bois e vacas, é possível que tenha usado paenas os dedos das mãos (de onde surgiu a palavra dígito). Embora simples este modelo não é trivial. É possível representar com um número natural quantos grãos de areia existem na Terra? (A resposta é sim!) E, principalmente, este modelo é incompleto.

Se pretendermos que nossas negociações incluam dívidas (e, como consequência, o calote!) teremos que expandir o modelo de forma a abarcar os números negativos e o zero, resultando no conjunto dos inteiros. O conjunto dos inteiros é ainda menos óbvio e mais abstrato que o dos naturais pois não temos conhecimento de alguma coisa concreta que exista em quantidades negativas! E mesmo este novo conjunto não é completo e não suficiente. Se quisermos oferecer como parte dos negócios uma fração de um terreno ou um pedaço de um queijo gigante teremos que ampliar o conjunto dos inteiros para outro conjunto que contenha frações, o conjunto dos racionais.


Esse parece agora ser um conjunto bem bonito e completo, o conjunto dos racionais, não tivessem os gregos descoberto que alguns números importantes não se encaixam dentro deles. A diagonal de um quadrado cujos lados medem um (em qualquer sistema de unidades) não é um racional e nem a razão entre a circunferência e o raio de um círculo (igual a 2 pi) não são números racionais. A experiência e a necessidade de descrever coisas pedem um modelo mais amplo. Por isto surgiram os irracionais, os números que não podem ser postos sob forma de uma fração. Racionais e irracionais, juntos, formam o conjunto dos números reais.

Estamos agora, a esta altura do desenvolvimento dos modelos matemáticos, muito longe dos conceitos intuitivos e primários. O conjunto dos números reais possui propriedades intrigantes e muito pouco óbvias. Entre dois números reais quaisquer existe uma infinidade de outros reais. Sua representação gráfica, a reta real, é infinita em ambas as direções e os pontos se empacotam de forma perfeita sem deixar nenhum furo ou imperfeição. O conceito é extremamente poderoso, possui coerência lógica e serve como modelo para a descrição de grande quantidade de objetos do mundo real. No entanto, não é tão claro se existe qualquer objeto no universo real que seja um bom representante desse modelo. Ele é útil para fazer descrições aproximadas de objetos que existem: se medirmos a distância entre duas cidades ou o comprimento de um fio estaremos ignorando, de forma totalmente apropriada e válida, as imperfeições do fio e da estrada que certamente não são contínuos como a reta real. Se ampliarmos com um potente microscópio uma seção do fio, veremos que ele, sendo de metal, é feito de granulações bem organizadas apresentando grandes vãos entre os átomos de sua estrutura. Isto não nos impedirá, no entanto, de usar réguas comuns para medir seu comprimento.

Observamos aqui uma tendência. O conjunto dos reais engloba os racionais, que por sua vez engloba os inteiros, que contém os naturais. O progresso do conhecimento se dá na direção da ampliação dos conceitos e na quebra das antigas barreiras. E, diferente do que se costuma pensar, os conceitos antigos, desde que bem estabelecidos, não são revogados como se revoga uma lei caduca e sim ampliados no que diz respeito a seu domínio de aplicação. Uma observação importante deve ser acrescentada aqui. Neste ponto do desenvolvimento da matemática (e mesmo antes disto, na verdade!), e da civilização humana como um todo, já teremos a necessidade de escolas. Precisaremos tirar as crianças de seus brinquedos e colocá-las em salas de aulas para garantir que o conhecimento acumulado por gerações de estudiosos, teóricos ou pessoas pragmáticas e engenhosas, seja repassado para as novas gerações. E, na medida em que cresce o domínio da ciência e as exigências das aplicações, mais tempo as pessoas deverão se dedicar ao estudo e a preparação para seu desempenho na vida e no ambiente de trabalho. Este é o preço que pagamos por termos descido das árvores a começado a usar ossos como ferramentas, modelar pedras para servir como instrumentos e armas, aprendido a domesticar o fogo.

Os modelos, é claro, passaram a representar objetos de complexidade crescente. Na planilha do engenheiro um prédio é um modelo de equilíbrio de forças onde a matemática permite que os pesos, as tensões no concreto e nos ferros se equilibrem para deixar estável a construção. Podemos descrever como se comporta uma mola mergulhada em um meio viscoso e sujeita a impactos externos, exatamente como existe no sistema de molas e amortecedores de um automóvel. O sistema é simples mas sua descrição completa exige um tópico matemático sofisticado, o das equações diferenciais. Queremos saber como uma corrente de elétrons se move dentro de materiais semicondutores. Para isto precisamos de um modelo bastante elaborado da física, a mecânica quântica. Com ela construímos relógios digitais, computadores e discos rígidos, entre outras máquinas diversas.

Grande parte das pessoas hoje, exceto aqueles excluídos da modernidade pela pobreza, usa direta ou indiretamente um satélite artificial para telecomunicações colocado em órbita geo-estacionária. Esses satélites giram em torno de nosso planeta com uma velocidade tal que parecerá, para um observador fixo na terra ou para a antena de seu receptor de TV, como estacionário em pleno ar. Para colocar um artefato desses em órbita é necessário usar o modelo da gravitação universal criado por Newton e, em alguns casos, será até mesmo necessário fazer correções usando o modelo da relatividade de Albert Einstein. Muita matemática está envolvida e provavelmente computadores sofisticados serão empregados nessas operações.

Exemplos de modelos mais prosaicos, mas igualmente úteis, podem ser encontrados na economia, no estudo das variações de preços dos produtos oferecidos ao consumidor, da inflação, do valor de um depósito feito meses atrás na caderna de poupança ou outra aplicação mais rentável. Modelos análogos serão usados para compreender a disseminação de uma doença, o contágio por um vírus ou a divulgação de um boato. Um modelo pode ser simples, como aquele que descreve os valores disponíveis em uma aplicação bancária com rendimento fixo, ou complicado e extenso como seria o modelo, ainda não desenvolvido, que descreve as oscilações nas bolsas de valores.

Tais modelos são úteis no presente, essenciais para a manutenção da vida moderna, complexa como ela se tornou. Mas eles têm uma habilidade extra: nos permitem prever o futuro. Um bom modelo descreve o que existe hoje e aponta para o que existirá amanhã, mesmo que esta previsão só possa ocorrer em termos probabilísticos, em alguns casos.

Um astrônomo poderá ver hoje em seu telescópio uma grande pedra varrendo o espaço em grande velocidade e decidir, usando os modelos matemáticos à sua disposição, se esta pedra colidirá ou não com nosso planeta. Como exemplo, a colisão do asteróide Shoemaker-Levi com o planeta Júpiter foi prevista com grande antecedência. Um bom modelo estelar será hábil para dizer, supondo conhecidas as condições atuais da estrela, em que estágio de sua evolução ela se encontra e por que etapas passará no futuro. Podemos, é claro, optar por uma visão poética dessa mesma estrela e isto será, sem dúvida, muito bom de se fazer. Mas, teremos perdido a habilidade de descobrir que essa estrela terá um dia esgotado seu combustível nuclear, que explodirá e poderá se tornar um buraco negro.

Finalmente chegamos àquela que considero ser a utilidade mais fina e essencial da matemática. Supridas as necessidades básicas do ser humano, garantida sua sobrevivência, seu anseio pela procriação e preservação da espécie e seu nível mínimo de conforto, a mente se volta para o conhecimento pelo conhecimento. Em um nível mais refinado não tem sentido perguntar para que serve a matemática. Por um lado um teorema serve porque é correto, porque é uma verdade. Por outro lado inúmeras teorias matemáticas foram desenvolvidas de forma puramente acadêmica, ou filosóficas, e muito mais tarde foram usadas em aplicações espetaculares.

Chegamos hoje a um estado de desenvolvimento da civilização onde a diversidade parece ser essencial. Precisamos de técnicos, de mão-de-obra braçal, de teóricos e de filósofos para enfrentar os desafios múltiplos e prementes por que passamos hoje. Um exemplo simples pode ser dado para corroborar esta afirmação: um pouco de ética bastaria para resolver grande parte das mazelas em nosso pais e conflitos pelo mundo afora e, neste sentido, precisamos de cidadãos filósofos. A experiência da história mostra que os povos que fizeram uso puramente pragmático da matemática entraram, ou já estavam, em declínio, enquanto os tempos áureos de qualquer povo, como na Grécia clássica, foram sempre pontuados pela livre investigação em todas as áreas a eles acessíveis, particularmente na matemática.

Vivemos em um período extraordinário da história da civilização. Temos hoje a habilidade para construir modelos científicos que descrevem o universo globalmente, que lançam perguntas sobre sua origem e destino e apontam para suas respostas. Estamos desvendando o código primário da existência humana através do projeto Genoma. Por outro lado, possuímos armas de destruição em massa e o poder para alterar de forma radical o clima no planeta. Os meios de transporte e as telecomunicações estão destruindo as barreiras nacionais e este processo não é suave ou indolor, particularmente para as nações mais pobres e com desenvolvimento tecnológico pouco consolidado.

A inserção em um mundo sem fronteiras exige profissionais de primeira linha, com formação simultaneamente profunda e ampla. Refletir sobre o avanço da ciência e da tecnologia, sobre os problemas que ela resolve e outros que ela causa, e participar deste progresso é essencial para que a sociedade brasileira possa se inserir na cidadania global em nível de igual participação e oportunidade.

Probabilidade e Estatística

O estudo matemático das probabilidades e da estatística, além de sua evidente importância prática, representa uma grande oportunidade para o uso dos conceitos da Teoria dos Conjuntos. Por isso faremos uma revisão dos conceitos relevantes.

Conjuntos

O conceito de conjuntos é um conceito primário, básico ao entendimento de toda a matemática. Conjuntos são coleções de objetos, não necessariamente envolvendo números ou outra entidade matemática. É comum representarmos os conjuntos exibindo explicitamente seus elementos, como em

$$ C_{1}=\{\spadesuit,\clubsuit,\diamondsuit,\heartsuit\} $$
onde os elementos são os naipes de cartas de baralho, ou
$$ C_{2}=\{1,3,5,7,9\}=\{\text{um inteiro ímpar menor que 10}\}. $$

Na segunda forma de descrever o conjunto usamos a notação:
$$ \text{Conjunto } =\{x_i|\; \text{ alguma propriedade satisfeita pelos elementos} \}.$$
Em muitas situações o conjunto pode ser muito grande ou possuir infinitos elementos, de forma que não podemos explicitá-los, tais como o conjunto de todos os inteiros pares
$$ C_{3}=\{\left.n_i \in \mathbb{N}\right|n_i \,\,\text{ par}\} $$
ou o conjunto de pontos no plano \(\mathbb{R}^2\) sobre a circunferência de raio 1,
$$ C_{4}=\{\left.(x,\,y)\in\mathbb{R}^2\right|(x^2+y^2=1)\}. $$

Se os elementos de um conjunto podem ser contados ele é dito enumerável e sua ordem, que denotaremos por \(\text{ord}(A)=n\), é o número de seus elementos. Nos exemplos acima temos \(\text{ord}(C_{1})=4\), \(\text{ord}(C_{2})=5\). O conjunto \(C_{3}\) é enumerável, com infinitos elementos, e \(C_{4}\) não é enumerável (também possuindo infinitos elementos).

Dizemos que um elemento \(a\) pertence à um conjunto \(C\) se \(a\) é um dos elementos de \(C\). Denotamos esta relação por \(a\in C\). Caso contrário escrevemos \(a\notin C\).

A contido em B

Dizemos que um conjunto \(A\) está contido no conjunto \(B\) se todos os elementos de \(A\) estão também em \(B\). Denotamos esta relação por \(A\subset B\). Caso contrário escrevemos \(A\not\subset B\). Observe que vale a seguinte afirmação: se \(A\subset B\) e \(x\in A\Rightarrow x\in B.\)

União e Intersecção

Conjuntos podem ser combinados de várias maneiras. Por exemplo, se \(A\) e \(B\) são dois conjuntos podemos encontrar a união dos dois, \(A\cup B\), ou sua intersecção \(A\cap B\), ilustradas na figura 1. Observe que
$$ x\in A\cup B \Rightarrow x\in A\text{ ou }x\in B, $$
$$ x\in A\cap B \Rightarrow x\in A\text{ e }x\in B. $$

Um número maior de conjuntos podem também ser combinados. Se \(A_{i}\) é uma coleção de conjuntos (\(i=1,\ldots,\,n)\) denotamos a união e intersecção destes conjuntos por: \(\underset{i=1}{\cup}A_{i}, \underset{i=1}{\cap}A_{i},\) respectivamente. Observe que dois conjuntos são disjuntos se \(A\cap B=\emptyset\).

 

Definição: Se \(A\subset S\) definimos \(\bar{A},\) o complementar de \(A,\) como o conjunto de todos os elementos de \(S\) que não estão em \(A\),
$$ \bar{A}=\{x\in S;\,\,x\notin A\}. $$

Observe que \(A\cup\bar{A}=S\).

Se \(S\) é finito ou numerável com \(n\) elementos então existem \(2^{n}\) eventos associados (subconjuntos de \(S\)).

 

O produto externo é outra forma de combinar conjuntos:

$$ A\times B=\left\{ (a,b)|a\in A,b\in B\right\}. $$

Seus elementos são os pares ordenados \((a,b)\). Observe que \(\mathbb{R}^n = \mathbb{R}\times\ldots\times\mathbb{R}.\)

Experimento aleatório e espaço amostral

Um experimento é não determinístico ou aleatório se seu resultado não pode ser determinado previamente, à partir das condições iniciais do sistema usado. Na prática um experimento pode ser considerado aleatório se o conjunto das condições iniciais e sua evolução até a obtenção do resultado forem muito complexas e de difícil análise. Por exemplo, quando se atira uma moeda todas as leis envolvidas no movimento são causais e é possível prever o resultado (com que face ela cairá ao solo) se todas as condições iniciais forem conhecidas. No entanto estas condições envolvem um grande número de variáveis (tais como as colisões com partículas do ar) e é, quase sempre, mais apropriado considerar que o resultado será aleatório. Na natureza macroscópica poucos experimentos são realmente aleatórios. No nível microscópico (quântico) temos fenômenos completamente aleatórios, tais como o momento em que uma substância radioativa sofrerá um decaimento e emitirá uma partícula ou radiação.

O conjunto dos resultados possíveis para um dado experimento é denomidado seu espaço amostral. Denotaremos por \(\varepsilon\) os experimentos e \(S\) seu espaço amostral. Alguns exemplos de experimentos aleatórios (dentro das ressalvas dadas acima) são:

\(\varepsilon_{1}:\) Jogue uma moeda 4 vezes e observe número de caras resultantes. \(S=\{0,1,2,3,4\} \).

\(\varepsilon_{2}:\) Jogue uma moeda 4 vezes e verifique a sequência de caras (que denotaremos por h) e coroas (que denotaremos por t). \(S=\{ \text{(hhhh), (hhht), …, (tttt)}\} \).

\(\varepsilon_{3}:\) Jogue uma moeda 4 vezes e verifique quantas caras e coroas resultam. \(S=\{(0,4),\,(1,3),\,(2,2),\,(3,1),\,(4,0)\} \).

\(\varepsilon_{4}:\) Deixe uma lâmpada acesa até queimar. Verifique o tempo de vida da lâmpada (um espaço amostral contínuo).

\(\varepsilon_{5}:\) Em um lote com 10 peças, sendo 3 defeituosas, retire 1 de cada vez, sem repor, até que todas com defeito sejam removidas. Quantas peças serão retiradas? \(S=\{3,4,5,6,7,8,9,10\}\).

\(\varepsilon_{5′}:\) Mesmo experimento anterior. Quantas peças podem ser retiradas sem que alguma tenha defeito? \(S=\{1,2,3,4,5,6,7\}\).

Definição: Um evento relativo ao experimento \(\varepsilon\) é um subconjunto de \(S\).

Exemplo 1: São eventos associados aos experimentos já listados:

\(\varepsilon_1\): \(A=\{2\} ,\) duas caras ocorrem,

\(\varepsilon_3\): \(B=\{(3,1),\,(4,0)\}\), mais caras que coroas,

\(\varepsilon_4\): \(C=\{t |\, t \lt 3000h \}\), lâmpada queima antes de 3000 horas.

Observe que, com esta definição, \(S\) e \(\emptyset\) são ambos eventos.

Se \(A\) e \(B\) são eventos então também são eventos:

\(A\cup B\) ocorre se \(A\) ou \(B\) ocorrem,
\(A\cap B\) ocorre se \(A\) e \(B\) ocorrem,
\(\bar{A}\) ocorre se \(A\) não ocorre.

No caso de diversos eventos \(A_{i}\) associados ao experimento:

\(\underset{i}{\cup}A_{i}\) ocorre se um dos \(A_i\) ocorre,
\(\underset{i}{\cap}A_{i}\) ocorre se todos os \(A_i\) ocorrem.

Notação: Se um experimento consiste na execução do experimento \(\varepsilon\) \(n\) vezes denotamos seu espaço amostral por meio do produto externo
$$ \text{S}\times\ldots\times\text{S}=\left\{ \left(s_{1},\cdots,\,s_{n}\left|s_{i}\in S\right.\right)\right\}.$$

Definição: Dois eventos \(A\) e \(B\) são mutuamente excludentes se não podem ocorrer simultaneamente. Neste caso \(A\cap B=\emptyset\).

Definição: Uma coleção de eventos \(\{A_i\}\) é uma partição de \(S\) se

1. \(A_{i}\cap A_{j}=\emptyset\) para \(i\neq j\),

2. \(\underset{i}{\cup}A_{i}=S\),

3. \(P\left(A_{i}\right)>0,\forall i\).

Portanto, uma partição é uma coleção de subconjuntos de \(S\) mutuamente disjuntos, que cobrem todo o conjunto \(S.\) Devido à propriedade 1, quando um experimento é realizado apenas um dos eventos de uma partição ocorre de cada vez.

Definição: A cada evento de \(S\) associado ao experimento \(\varepsilon\) associamos uma probabilidade de ocorrência \(P\left(A\right)\), um número real, satisfazendo

1. \(0\leq P\left(A\right)\leq1\),

2. \(P\left(S\right)=1\),

3. Se \(A\cap B=\emptyset\) então \(P\left(A\cup B\right)=P\left(A\right)+P\left(B\right)\).

Se \(\{A_{i}\}\) é uma coleção de eventos disjuntos (\(A_i \cap A_j=\emptyset\) para \(i\neq j\)) então \(P\left(\cup A_{i}\right)=\sum P\left(A_{i}\right)\).

Teorema: \(P(\emptyset)=0\)

Demonstração: \(A=A\cup\emptyset\) portanto \(P(A)=P\left(A\cup\emptyset\right)=P\left(A\right)+P\left(\emptyset\right)\Rightarrow P\left(\emptyset\right)=0 \)

Teorema: \(P(\overline{A})=1-P(A)\)

Demonstração: \(S=A\cup\overline{A}\), uma união disjunta. \(P\left(S\right)=1=P\left(A\right)+P\left(\overline{A}\right)\ \).

Esta última propriedade é muito interessante em alguns casos onde é mais fácil calcular \(P\left(\overline{A}\right)\), a probabilidade de não ocorrer o evento \(A\).

Teorema: \(P\left(A\cup B\right)=P\left(A\right)+P\left(B\right)-P\left(A\cap B\right)\)

Demonstração: \(A\cup B=A\cup\left(B\cap\overline{A}\right)\) e \(B=\left(B\cap A\right)\cup\left(B\cap\overline{A}\right)\). Como ambas uniões são disjuntas temos que
$$ P\left(A\cup B\right)=P\left(A\right)+P\left(B\cap\overline{A}\right)\,\,\,\text{e}\,\,\,P\left(B\right)=P\left(A\cap B\right)+P\left(\overline{A}\cap B\right) $$
$$ \Rightarrow P\left(A\cup B\right)=P\left(A\right)+P\left(B\right)-P\left(A\cap B\right).\ $$

Aplicando-se este mesmo resultado 2 vezes temos

$$
\begin{array}{rl}
P(A\cup B\cup C)= & P(A)+P(B)+P(C) \\
& -P(A\cap B)-P(B\cap C)-P(C\cap A)+P(A\cap B\cap C)
\end{array}
$$

Teorema: Se \(A\subset B\Longrightarrow P\left(A\right)\leq P\left(B\right)\)

Demonstração: Escreva \(B=A\cup\left(B\cap\overline{A}\right)\Longrightarrow P(B)=P(A)+P(B\cap\overline{A})\Longrightarrow P\left(A\right)\leq P\left(B\right).\)

Espaços amostrais finitos

Vamos considerar, nesta seção, experimentos cujos resultados são descritos por um espaço amostral consistindo de um número finito de \(k\) elementos, \(S={ a_1,\ldots,\,a_k}\). Chamaremos de um evento simples (ou elementar) a um evento formado por um resultado simples, \(A={a_i} \). A cada evento simples associaremos uma probabilidade \(p_i=P({a_i})\) satisfazendo

(a) \(0\leq p_{i}\leq1\),

(b) \(\sum_{i}^{k}p_{i}=1.\)

Notamos que \(\left\{ a_{i}\right\} \cap\left\{ a_{j}\right\} =\emptyset,\;i\neq j,\) o que significa que a coleção de todos os eventos simples de \(S\) é uma partição do espaço amostral.

Se tomarmos um evento constituído de \(r\) destes eventos simples (\(1\leq r\leq k)\; A={a’_1,\ldots,\,a’_r}\) (uma combinação de \(r\) eventos quaisquer de S) então
$$ P\left(A\right)=p_{1}+p_{2}+\ldots+p_{r}=\sum^{r}p{}_{i.} $$

Isto significa que conhecemos a probabilidade de \(A\) se conhecermos a probabilidade dos elementos simples que a compõem.

Se todos os \(k\) resultados são igualmente verossímeis (ocorrem com a mesma probabilidade) então
$$ p_{i}=\frac{1}{k}\;\;\text{e}\;\;P(A)=\frac{r}{k}. $$

Resumindo, se \(A\) é formado por \(k\) resultados simples igualmente prováveis então
$$ P(A)=\frac{\text{número de casos favoráveis}.}{\text{número de casos possíveis}} $$

Exemplo 2: Atirando uma moeda 2 vezes (ou duas moedas, ao mesmo tempo) qual é a probabilidade de se obter 1 cara? O experimento consiste em contar o número de caras resultantes e o espaço amostral é \(S={0,1,2}\). O evento favorável é \(A={1 \text{ cara }}={1 h}\). Note que \(P(A)\neq\frac{1}{3}\) pois os eventos de \(S\) não são igualmente verossímeis. Uma descrição mais apropriada do espaço amostral seria:
$$
S’=\{(h,h),\,(h,t),\,(t,h),\,(t,t)\}
$$

O espaço amostral \(S’\) consiste de 4 casos possíveis, dois deles favoráveis. Portanto
$$ P(A)=P(1\text{cara})=\frac{2}{4}=0,5. $$

Isto mostra a importância de se conhecer técnicas de contagens de eventos.

Exemplo 3: Um dado honesto (bem balanceado) cai com qualquer das faces virada para cima com a mesma probabilidade. Jogando-se o dado uma vez, qual a probabilidade de que ele caia com um número maior que 2? O espaço amostral é \(S=\{1,2,3,4,5,6\}\), o evento favorável é \(A=\{3,4,5,6\}\). A probabilidade procurada é \(P(A)=4/6=2/3.\)

Exemplo 4: Jogando-se um dado 2 vezes, qual é a probabilidade de que a soma dos números obtidos seja 6?

Neste caso o espaço amostral é
$$ S=\left\{\begin{array}{cccc}
(1,1) & (1,2) & \ldots & (1,6) \\
\vdots & & & \vdots \\
(6,1) & (6,2) & \ldots & (6,6)
\end{array}\right\}.
$$

Destes eventos simples os únicos favoráveis são \(A=\{(1,5),\,(2,4),\,(3,3),\,(4,2),\,(5,1)\}.\) Portanto \(P(A)=5/36.\)

Métodos de enumeração ou contagem

Vemos que é importante saber contar quantos eventos podem resultar de um certo experimento. Consideremos então a questão: de quantas maneiras diferentes podemos dispor de \(n\) objetos (permutações)? O primeiro pode ser escolhido entre \(n\) objetos, o segundo entre \(n-1\), até o útimo objeto restante. Como ilustrado na figura, o número resultante é \(n \times (n-1) \times \cdots \times 1 =n!\).

Como notação escreveremos \(_{n}P_{n}=n!\) para indicar a permutaçao de \(n\) objetos.

De quantas formas diferentes podemos escolher apenas \(r,\;(r\lt n)\) entre \(n\) objetos diferentes? Agora a escolha é interrompida após a seleção do \(r\)-ésimo objeto. Denotando por \(_{n}A_{r}\) este número temos
$$ _{n}A_{r}=n\left(n-1\right)\cdots\left(n-r+1\right)=\frac{n!}{\left(n-r\right)!}.$$

Se a ordem em que estes \(r\) elementos entram na seleção não é relevante então temos que remover da contagem acima as seleções repetidas. Temos que \(r\) objetos podem ser permutados de \(r!\) formas diferentes. Então, denotando por \(C\) o número de modos de permutar \(r\) entre \(n\) elementos, temos
$$ C=\frac{_{n}A_{r}}{r!}=\frac{n!}{r!\left(n-r\right)!}. $$

O número de combinações de \(n\) elementos em grupos de \(r\) elementos, sem que a ordem seja importante, aparece em diversas aplicações da matemática e recebe uma notação especial:
$$ C=\left(\begin{array}{c} n \\ r \end{array}\right)=\frac{n!}{r!\left(n-r\right)!}. $$
Estes são os chamados coeficientes binomiais. Eles possuem diversas propriedades interessantes. Entre elas, se \(n\) é um inteiro positivo e \(0\leq r\leq n\) então

$$
\left( \begin{array}{c} n \\ r \end{array}\right) =
\left(\begin{array}{c} n \\ n-r \end{array}\right), \;\;\;\;
\left(\begin{array}{c} n \\ r \end{array}\right)=
\left(\begin{array}{c} n-1 \\ r-1 \end{array}\right) +
\left(\begin{array}{c} n-1 \\ r \end{array}\right)
$$

Exemplo 5:. Na Loteria brasileira Megasena uma aposta simples consiste em escolher 6 entre 60 números. Qual a probabilidade de se escolher os 6 números sorteados? Temos que
$$ C=\left(\begin{array}{c} 60 \\ 6 \end{array}\right)=\frac{60!}{6!(54)!}=50063860 $$

é o número de resultados possíveis. A probabilidade de se acertar com um jogo simples é \(1/50063860\).

Observe que a operação acima pode ser simplificada da seguinte forma:
$$ \frac{60!}{6!(54)!}=\frac{55\times56\times57\times58\times59\times60}{2\times3\times4\times5\times6}=50063860. $$
(Os primeiros \(54\) fatores no numerador são cancelados por \(54!\) no denominador.)

Probabilidade Condicionada

Vamos usar de um exemplo para mostrar a diferença entre escolher objetos de um lote inicial, fazendo ou não a reposição dos objetos retirados após cada escolha.

Exemplo 6: Em um lote com 100 peças, 20 são defeituosas. Retiramos 2 peças e definimos dois eventos: \(\;A=\){1ª peça com defeito} \(B=\){2ª peça com defeito}. Se há reposição da peça retirada temos:
$$P(A)=\frac{20}{100}=\frac{1}{5},\;\;\; P(B)=\frac{1}{5}.$$

Mas, se não há a reposição, após a retirada da primeira peça restam 99, mas não sabemos quantas são defeituosas. Vamos denotar por \(P(B|A)\) = a probabilidade condicionada do evento \(B,\) tendo ocorrido o evento \(A.\) Se a primeira peça tinha defeito, restam 19 peças com defeito em um lote de 99, e \(P(B|A)=\frac{19}{99}\).

Como \(A\) ocorreu, o espaço amostral fica reduzido. Observe ainda que a probabilidade de \(B\) se \(A\) não tiver ocorrido é \(P(B|\overline{A})=\frac{20}{99}\).

Exemplo 7: Ex.: Dois dados são lançados e representamos o resultado por \(\left(x_{1},\,x_{2}\right).\) O espaço amostral é

$$
S=\left\{ \begin{array}{cccc}
(1,1) & (1,2) & \ldots & (1,6) \\
(2,1) & (2,2) & \ldots & (2,6) \\
\vdots & & & \vdots \\
(6,1) & (6,2) & \ldots & (6,6)
\end{array}\right\},
$$
consistindo de 36 eventos simples. Considere 2 eventos: \(A\) onde a soma dos dados é 10; \(B\) onde o primeiro resultado é maior que o segundo:

$$
\begin{array}{rl}
A= & \{(x_1,x_2)|x_1 + x_2=10\} = \{(4,6),(5,5),(6,4)\} \\ & \\
B= & \left\{(x_1,x_2)|x_1 \gt x_2\right\} \\
= & \left\{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),\right. \\
& \left.(5,2),(5,3),(5,4),(6,1),(6,2),(6,3),(6,4),(6,5)\right\}
\end{array}
$$

A probabilidade de ocorrerem \(A\) e \(B\) são, respectivamente,
$$ P\left(A\right)=\frac{3}{6},\;\;P(B)=\frac{15}{36},$$
enquanto a probabilidade condicionada de ocorrer \(B\) tendo ocorrida \(A\) é $$ P(B|A)=\frac{1}{3}. $$ O espaço amostral se reduz para \(A={(4,6),\,(5,5),\,(6,4)}\) e, entre estes eventos apenas \((6,4)\) é favorável. Da mesma forma a probabilidade de ocorrer \(A\) tendo ocorrido \(B\) é
$$ P(A|B)=\frac{1}{15}, $$

pois \(\text{ord}(B)=15\) e apenas o evento \(\left(6,4\right)\) é favorável. Observe ainda que a probabilidade de que \(A\) e \(B\) ocorram simultaneamente é
$$ P(A\cap B)=\frac{1}{36}.$$

Note que:
$$P(A|B)=\frac{P(A\cap B)}{P(B)}=\frac{1}{36}\frac{36}{15}=\frac{1}{15}$$
$$P(B|A)=\frac{P(B\cap A)}{P(A)}=\frac{1}{36}\frac{36}{3}=\frac{1}{3}$$

Isto sugere a definição de probabilidade condicionada (que pode ser formalmente demostrada):

$$ P(B|A)=\frac{P(A\cap B)}{P(A)} $$

para \(P(A)\gt 0\). É claro que, se \(P(A)=0\), \(P(B|A)=0\). Podemos então escrever

$$ P(A\cap B)=P(B|A)P(A)=P(A|B)P(B). $$

Exemplo 8: Entre 100 calculadoras temos aparelhos novos (N) e usados (U), eletrônicos (E) e manuais (M), de acordo com a tabela:

Uma é escolhida ao acaso e verifica-se que é nova. Qual probabilidade de que ela seja eletrônica?

Como já se vericou que a calculadora é nova, o espaço amostral fica reduzido à apenas 70 unidades. Nele apenas 40 calculadoras são eletrônicas. Usando a definição de probabilidade condicionada temos

$$ P(E|N)=\frac{P(E\cap N)}{P(N)}=\frac{40/100}{70/100}=\frac{4}{7}.$$

Exemplo 9: Retomamos a situação das 100 peças, sendo 20 com defeito. Qual a probabilidade de se escolher 2, sem reposição, e serem ambas defeituosas?

Definimos os eventos A = {1ª com defeito}; B = {2ª com defeito}. O evento favorável é \(A\cap B\) e sua probabilidade é

$$ P(A\cap B)=P(B|A)P(A)=\frac{19}{99}\frac{20}{100}=\frac{19}{495}. $$

Uma observação será útil antes de prosseguirmos: seja \(\{M_{i}\}\) \(i=1,\ldots,\,k,\) é uma partição de \(S\). Podemos decompor \(B\) em partes mutuamente excludentes

$$ A=(A\cap M_{1})\cup\cdots\cup(A\cap M_{k}). $$

Portanto:

$$ P(A)=\sum_{i}P(A\cap M_{i})=\sum_{i}P(A|M_{i})P(M_{i}). $$


Exemplo 10: Na mesma situação anterior, qual a probabilidade de, escolhendo 2 peças, a segunda ter defeito? Novamente temos \(A=\) {1ª com defeito}; \(B=\) {2ª com defeito}. Queremos calcular \(P(B)\). Podemos escrever \(B\) como a união disjunta \(B=\left(B\cap A\right)\cup\left(B\cap\bar{A}\right)\). Então

$$
\begin{array}{rl}
P(B)= & P\left(B\cap A\right)+P\left(B\cap\bar{A}\right)=P(B|A)P(A)+P(B|\bar{A})P(\bar{A}) \\
= & \frac{19}{99}\frac{1}{5}+\frac{20}{99}\frac{4}{5}=\frac{1}{5}.
\end{array}
$$

Exemplo 11: Um produto é manufaturado por 3 fábricas diferentes que chamaremos de \(F_{1},\,F_{2}\)e \(F_{3}\). A quantidade de peças produzida por cada fábrica e a porcentagem de defeitos são exibidas na tabela:

Fábrica produção/dia peças com defeito
F1 2 2%
F2 1 2%
F3 1 4%

Após um certo tempo a produção das 3 fábricas é colocada em um depósito e uma peça é retirada ao acaso. Qual é a probabilidade dela ser defeituosa? Vamos definir os seguintes eventos \(D=\) {peça com defeito}; \(F_i\) = {peça fabricada por \(F_i\)}, \(i=1,2,3\). Podemos usar a união disjunta \(D=\cup_{i}(D\cap F_{i})\) para calcular

$$
\begin{array}{rl}
P(A)=& \sum_{i}P(D\cap F_{i})=\sum_{i}P(D|F_{i})P(F_{i})\\
=& P(D|F_{1})P(F_{1})+P(D|F_{2})P(F_{2})+P(D|F_{3})P(F_{3}) \\
=& 00,2\frac{1}{2}+00,2\frac{1}{4}+00,4\frac{1}{4}=0,025.
\end{array}
$$

Podemos ainda fazer a seguinte pergunta: Suponha que a peça retirada é defeituosa. Qual é a probabilidade de que ela tenha sido produzida na \(F_1?\) Queremos, portanto, \(P(F_{1}|D)\). Usamos

$$
\begin{array}{rl}
P(F_1|D)= & \frac{P(D|F_1)P(F_1)}{P(D)}=\frac{P(D|F_1)P(F_{1})}{\sum_{i=1}^{3}P(D|F_i)P(F_i)}= \\
& \frac{(0,02)\frac{1}{2}}{(0,02)\frac{1}{2}+(0,02)\frac{1}{4}+(0,04)\frac{1}{4}}=0,04,
\end{array}
$$

onde, na segunda igualdade, foi usado o fato de que \({F_i}\) é uma partição do espaço amostral.

Teorema de Bayes

Seja \({B_i}\) uma partição do espaço amostral e \(A\) um evento de \(S.\) Então
$$ P(B_i|A)=\frac{P(A|B_i)\,P(B_i)}{\sum_{k=1}^{3}P(A|B_k)\,P(B_k)},\:i=1,…,\,n. $$

Eventos independentes

Dois eventos são ditos independentes se a ocorrência de um não afeta a probabilidade de ocorrência do outro.

Exemplo 12: Um dado é jogado 2 vezes. Definimos os eventos \(A=\){1º mostra número par}, \(B=\){2º cai 5 ou 6}. Vemos que são dois eventos não relacionados. Temos

$$ P(A)=\frac{1}{2},\;\; P(B)=\frac{1}{3}.$$
$$ P(A\cap B)=\frac{6}{36}=\frac{1}{6}, $$

pois \(A\cap B=\{(2,5),(2,6),(4,5),(4,6),(6,5),(6,6)\}\). Consequentemente

$$ P(A|B)=\frac{P(A\cap B)}{P(B)}=\frac{1}{2}. $$

Observamos que \(P(A|B)=P(A).\) Da mesma forma \(P(B|A)=P(B).\)

Definição: \(A\)e \(B\)são eventos independentes se, e somente se, \(P(A\cap B)=P(A)P(B).\)

Uma boa revisão sobre a Teoria dos Conjuntos pode ser vista em Gigamatematica: Conjuntos Enumeráveis