Matéria Escura (Dark Matter)

No início da década de 1930 o astrônomo suíço Fritz Zwicky estava usando um novo tipo de telescópio no topo do Monte Palomar, Califórnia, para fotografar grandes áreas do céu em tomadas rápidas e com pouca distorção. Ele construiu um grande mapa com centenas de milhares de galáxias, o Catálogo Zwicky de Galáxias. Fazendo isso ele e seus colegas descobriram que as galáxias tendem a se juntar em aglomerados. Estudando o Aglomerado de Galáxias de Coma, sob a luz das descobertas de Hubble, ele notou uma anomalia no movimentos das galáxias dentro de aglomerados.

De acordo com as leis de Newton objetos que se movem mais afastados do centro de massa a que estão ligados devem se mover mais lentamente. Este princípio se reflete em uma das leis de Kepler para o movimento dos planetas no sistema solar. No entanto Zwicky percebeu que mesmo as galáxias mais afastadas mantinham velocidades altas demais em relação à massa observada do aglomerado.

ZwickyFritz Zwicky (1898 — 1974) foi um astrônomo suíço que trabalhou a maior parte de sua vida nos EUA. Zwicky foi o primeiro astrónomo a usar o teorema do virial para fazer inferências sobre a existência da não-observada matéria escura, descrevendo-a como dunkle Materie (dark matter ou matéria escura). Ele foi também o primeiro a observar estrelas super brilhantes, que ele denominou supernovas, que se formam quando as estrelas estão em sua fase final de evolução, depois de usar a maior parte de seu combustível nuclear. Supernovas são a fonte de grande parte dos raios cósmicos que chegam a Terra e marcam a transição entre estrelas comuns e as estrelas de neutrons. Zwicky propôs a existência das lentes gravitacionais, uma consequência da teoria da gravitação de Einstein.

Mais especificamente, Zicky aplicou o Teorema do Virial que relaciona a energia potencial gravitacional com o movimento das partes de um sistema. Nas velocidades observadas as galáxias deveriam romper com a atração gravitacional exercida pelo grupo e partir em voo livre pelo espaço. Em resumo, a massa do aglomerado, deduzida à partir da observação da luz por elas emitidas, era insuficiente para explicar por que as galáxias mais afastadas do centro permaneciam ligadas ao aglomerado.

Para resolver esta anomalia Zwicky apresentou a hipótese de que grande parte da massa no aglomerado era constituída por um novo tipo de matéria, que já havia sido cogitado por outros astrônomos, denominado Dark Matter ou matéria escura. Esta matéria deveria ser diferente da usual, exercendo atração gravitacional sobre outros corpos mas não interagindo com eles de nenhuma outra forma. Naturalmente, dada a exoticidade da sugestão, algum tempo se passou até que outras evidências foram encontradas para dar suporte à hipótese e a matéria escura fosse amplamente aceita pelas astrônomos e cosmólogos.

O mesmo princípio foi usado pelo astrônomo francês Le Verrier. Percebendo anomalias no movimento de Urano ele postulou a existência de outro corpo em órbita depois deste planeta. Seus cálculos foram precisos o suficiente para que ele anunciasse a existência de Plutão, que foi observado por astrônomos na posição prevista com erro de apenas um grau. O mesmo Le Verrier também notou variações inesperadas no movimento de Mercúrio e sugeriu a existência do planeta Vulcano órbita próxima ao Sol. Nesse caso ele estava errado e o fenômeno só foi explicado mais tarde pela teoria de Einstein.
Vera Rubin foi uma astrônoma dos EUA, uma das primeiras pessoas a estudar as curvas de rotação de galáxias espirais. Ela mostrou que a velocidade de rotação das estrelas afastadas do centro galático é muito maior do que o esperado se considerarmos apenas a matéria visível. Considera-se que a discrepância pode ser explicada pela existência da matéria escura.

Em 1965 a astrofísica americana Vera Rubin estava trabalhando com amplificadores eletrônicos de luz que permitiam a coleta rápida de espectros de emissão de galáxias. Ela estudava a rotação de galáxias como Andrômeda, nossa vizinha, e descobriu coisas interessantes e inesperadas. Com esses aparelhos sensíveis ela obteve as curvas de rotação para objetos dentro da galáxia.

Galáxias espirais possuem longos braços que giram em torno do centro galático. A densidade de massa luminosa decai quando de afasta do centro em direção às bordas. Estrelas (e outros objetos) mais afastadas deveriam ter velocidades cada vez menores, de acordo com a segunda lei de Kepler, da mesma forma que acontece com os planetas no sistema solar. Mas, como observou Rubin, isso não ocorre. Surpreendentemente as velocidades ficam quase inalteradas com o distanciamento do centro. Esse efeito pode ser explicado postulando a existência de um halo, algo como uma bola oca gigante envolvendo a galáxia, feito de algum material com atração gravitacional. O problema está em que esse halo não aparece nas fotos dos telescópios nem nas imagens geradas pelos radiotelescópios.

Intrigados com a observação, Rubin e vários outros pesquisadores começaram a coletar dados sobre outras galáxias e, em todos os casos, o mesmo fenômeno foi verificado. Mais uma vez se levantou a hipóteses de que existe um agente de atração não detectado dentro do conjunto estudado. Rubin estimou que deveria existir em torno de 6 vezes mais massa do que a observada por meios luminosos.

Curvas de rotação na galáxia
Curvas de rotação de estrelas dentro da galáxia Messier 33. A linhas tracejada mostra as velocidades em função da distância do centro para a galáxia constituída apenas por matéria visível. A curva superior, contínua, mostra as velocidades de fato observadas. Os primeiros pontos são obtidos na faixa de luz visível, os demais na radiação de 21cm do hidrogênio.
Dark Matter (artístico)
Imagem artística da possível densidade de matéria escura na Via Láctea.

Hoje pelo menos três tipos de observações independentes confirmam a existência da matéria escura. A velocidade das galáxias em aglomerados ou de estrelas dentro das galáxias, a emissão de raios-X pelo gases que permeiam os aglomerados e as lentes gravitacionais. Por todos esses meios se constata que em torno de 80% da massa dos aglomerados, em média, é formada por um tipo de matéria exótica que não emite luz nem nenhuma outra forma de radiação eletromagnética detectável.

Lentes Gravitacionais

De acordo com a Teoria da Relatividade Geral (TRG) de Einstein a presença da matéria deforma o espaço em torno dela. Um feixe de luz, emitido por uma estrela distante, passando perto do Sol, por exemplo, se desvia fazendo com que a estrela pareça estar em outro ponto no céu. Esse efeito foi usado em 1919, Sobral, nordeste do Brasil, para prover a primeira verificação observacional da TRG. Aproveitando-se de um eclipse solar astrônomos ingleses puderam mostrar que o desvio da luz era compatível com aquele previsto na teoria de Einstein.

Cinco imagens com aparência de estrelas aparecem quando a luz de um único quasar passa por uma lente gravitacional. Telescópio Hubble, NASA.

Zwicky já havia proposto que seria possível usar um aglomerado de matéria no espaço como lente gravitacional, uma vez que o espaço deforma a luz que foi emitida por trás. Essas lentes são observadas através de efeitos peculiares, tais como a formação de imagens múltiplas de um mesmo objeto ou arcos e anéis formados por deformação da imagem. Através das medidas de distorção é possível se calcular a massa da lente, o objeto que causou essa distorção. Desta forma é possível confirmar que existe uma deformação maior do que aquela que seria causada apenas pelos objetos luminosos, o que vem a fortalecer a hipótese de que existe matéria escura presente nesse objeto.

Evidência Cosmológica

Edwin Hubble observou que a maioria das galáxias estão se afastando de nós e que quanto mais distantes elas estão maiores suas velocidades. O afastamento é percebido pelo desvio para o vermelho da luz por elas emitidas.

Outra indicação importante de que a matéria escura realmente existe é dada pela cosmologia. A Teoria do Big Bang, a mais amplamente aceita na atualidade, é uma aplicação direta da TRG sob a hipótese de que o universo é bastante uniforme, em grandes escalas. Dependendo da densidade de massa nesse modelo a geometria universal assume uma das três formas possíveis de espaços homogêneos (igual em todos os pontos) e isotrópicos (igual em todas as direções). Se a densidade de massa no universo (massa dividida pelo volume) for acima de um certo número crítico o universo seria formado por seções esféricas (ou seja, a cada momento ele seria uma hiper-esfera de 3 dimensões, de curvatura positiva). Se a densidade for abaixo do número crítico o universo teria seções como selas (de curvatura negativa). Mas a observação não mostra curvatura mensurável indicando que estamos exatamente sobre o caso crítico de um universo com densidade tal que o espaço contém seções planas, de curvatura nula. No entanto a massa visível, observada em estrelas e galáxias e todos os demais corpos luminosos, é bem inferior a essa massa crítica, o que leva a crer, mais uma vez, que grande parte dela está sob a forma de matéria escura.

No modelo padrão das partículas elementares a matéria bariônica é toda aquela composta por prótons, neutrons e elétrons, como a matéria ordinária que conhecemos. No modelo cosmológico do Big Bang a maior parte da matéria bariônica foi formada por hidrogênio e um pouco de hélio. Os elementos mais pesadas foram formados mais tarde, no interior das estrelas e nas explosões de supernovas. Uma hipótese é a de que a matéria escura seja não bariônica, como veremos.

Outra consequência observada do Big Bang é a chamada radiação cósmica de fundo, um resíduo deixado pela radiação inicial de alta temperatura. Com a expansão essa radiação se encontra hoje muito mais fria, aproximadamente de 3ºC, com vibração na faixa de micro-ondas. Ela pode ser mapeada com precisão, sendo uniforme o bastante para embasar o modelo cosmológico padrão, mas possuindo granulação suficiente para a geração das estruturas formadas mais tarde, como galáxias, aglomerados e filamentos. A matéria escura e a ordinária não se comportam da mesma forma com a expansão do espaço. Embora as duas interajam gravitacionalmente, a matéria bariônica (ordinária) passou por um período de interação forte com a radiação nos momentos primordiais da evolução. Essas interações alteram a forma como a granulação inicial evoluiu mais tarde formando estruturas. A observação do universo hoje, comparado com as granulações da radiação de fundo, corrobora a hipótese de que grande porção da massa hoje existente é formada por matéria escura.

Penzias e Wilson descobriram a radiação cósmica de fundo.

Boa parte da pesquisa moderna em astronomia se concentra na busca dessa matéria e sua natureza permanece em debate. Inicialmente se considerava que essa matéria fosse formada por estrelas frias e pouco brilhantes, por planetas escuros e errantes, por gases ou por corpos macroscópicos ou não, espalhados no meio intergalático. Houve a sugestão de que buracos negros poderiam ser abundantes a ponto de fornecer essa massa oculta. Mas, se esse fosse o caso, os atuais buracos negros seriam feitos de matéria ordinária antes que estas estrelas colapsassem. Toda essa matéria ordinária estaria presente nos primeiros momentos do universo, o que estaria em discordância com a quantidade de matéria escura esperada pela análise da radiação cósmica de fundo.

Buracos negros são formados por estrelas de grande massas, quando seu combustível nuclear é esgotado. O gás estelar é comprimido para volumes pequenos até que a densidade seja tão alta que nem a luz pode escapar de sua atração gravitacional.

Teoricamente um tipo diferente de buraco negro pode existir e estas entidades hipotéticas foram consideradas como partes de matéria escura. Buracos negros primordiais podem ter sido criados no início do universo quando a própria matéria comum estava se formando. Eles poderiam ter se originado de flutuações do espaço-tempo logo após o Big Bang, fortes o bastante para aglomerar blocos de massa em um volume muito pequeno, formando buracos negros diminutos. A modelagem computacional sugere que eles poderiam ter massas bem pequenas e poderiam ser responsáveis por parte do efeito atribuído à matéria escura. Em 2018 foi realizada uma pesquisa em 740 supernovas em busca de efeitos de lentes gravitacionais causadas por esses objetos e o resultado indica que eles não podem explicar mais que 40% do efeito da matéria escura. Pelo contrário, surgiram indicações de que esta não é uma boa hipóteses e que buracos negros primordiais não contribuem nessa questão. Além disso não existem evidências de eles existam de fato.

Portanto a hipótese da matéria escura como constituída por matéria ordinária entra em conflito com o que é observado e nenhum dos modelos propostos foi capaz de explicar as anomalias observadas. A teoria mais aceita é a de que esta matéria é não bariônica, o que significa que não é composta de prótons e nêutrons como a matéria ordinária que conhecemos. A primeira possibilidade consiste em explorar os neutrinos.

Neutrinos

Primeira observação de um neutrino colidindo com um próton em uma câmara de bolhas (colisão ocorre no ponto onde os três riscos à direita da foto).

A existência dos neutrinos foi proposta em 1930, 26 anos anos de sua detecção experimental. Durante o decaimento beta a força nuclear fraca, dentro do núcleo atômico, quebra um nêutron em um próton mais um elétron, que é ejetado do átomo. Apesar de que a carga criada no próton (+) fica balanceada pelo elétron (-), Wolfgang Pauli notou que seria necessária a criação de outra partícula para equilibrar a energia, o momento linear e o momento angular do átomo inicial.

Curiosamente o neutrino foi proposto 2 anos antes da descoberta do nêutron, por James Chadwick. Neutrinos possuem massa, portanto tem efeito gravitacional, mas não interagem por meio da força eletromagnética.Neutrinos são difíceis de serem detectados.

Hoje, com o avanço da tecnologia, é possível saber se um neutrino foi emitido pelo Sol, por outros objetos no sistema solar ou na Via Láctea, ou mesmo por fontes fora de nossa galáxia.

Uma das hipóteses feitas para solucionar o mistério da matéria escura consiste em apelar para o Modelo Padrão de Partículas da física. Neste modelo, que é muito bem sucedido na explicação das partículas conhecidas, existem os neutrinos, partículas estáveis (de longa vida) que não interagem com outras partículas por meio do eletromagnetismo nem das interações nucleares fortes. Neutrinos atravessam grandes amontoados de matéria (como o planeta Terra, por exemplo) sem sofrer alterações. O modelo dos WIMPs (weakly interacting massive particles, partículas massivas de interação fraca) inicialmente considerou neutrinos formados no início do universo, deixados como resíduos da grande explosão inicial, como os responsáveis pela atração da matéria não luminosa.

Na década de 1980 as simulações numéricas realizadas em computador começaram a ganhar importância no estudo da evolução do universo e da formações de estruturas, como galáxias, aglomerados e grandes filamentos cósmicos. No modelo padrão é predito que os neutrinos foram formados com altíssimas velocidades, comparáveis (mas inferiores) à velocidade da luz. De acordo com as simulações estas partículas quentes (por que muito velozes) favoreceriam a formação inicial de estruturas muito grandes que apenas mais tarde se quebrariam em blocos menores, formando coisas tais como as galáxias.

Em contraste, partículas mais frias (lentas) estimulariam a formação de pequenos aglomerados de matéria, que bem mais tarde se fundiriam formando estruturas maiores. Comparando estes resultados teóricos com as estruturas observadas se descartou a predominância de neutrinos super velozes na composição da matéria escura. As simulações deixaram claro que pelo menos uma partícula desconhecida, não presente no modelo padrão de partículas, deveria existir.

Uma outra partícula proposta para explicar efeitos da matéria escura são os áxions, partículas ainda não detectadas, por enquanto apenas uma conjectura teórica proposta para resolver outro problema existente na cromodinâmica quântica. Se existirem eles interagiriam pouco com a matéria comum e radiação, teriam massa bem pequena. Eles poderiam, no entanto, existir em quantidade suficiente para explicar os efeitos da massa desaparecida.

Gravitação Alternativa

Em 1983 o astrofísico Mordehai Milgrom sugeriu um mecanismo alternativo para explicar as anomalias observadas nos movimentos galáticos. Ou invés de buscar fontes desconhecidas de atração gravitacional ele optou por sugerir alterações na teoria gravitacional. Sua hipótese foi denominada Dinâmica Newtoniana Modificada (Modified Newtonian Dynamics) ou MOND.

A gravitação Newtoniana está muito bem verificada na escala de experiência cotidiana, em experimentos feitos na Terra. Não há garantia absoluta de que ela continua funcionando da mesma forma em escalas galáticas. Assim como a Gravitação de Einstein se reduz à Newtoniana para a escala cotidiana, Milgrom propôs uma teoria alternativa que age um pouco diferente em grandes escalas.

Algumas galáxias parecem se movimentar em bom acordo com a teoria MOND mas ela não resolve todos os problemas. Resta, no entanto, explorar outros modelos, com novas descrições da gravitação, até que todas as anomalias fiquem bem explicadas.

Conclusão

Imagem 3D da distribuição de matéria escura pelo universo observável. O mapeamento foi feito por meio de lentes gravitacionais, pelo Telescópio Espacial Hubble.
Existe também o problema não resolvido da energia escura que causa efeito contrário ao da matéria escura, impulsionando galáxias e aglomerados para que se acelerem no movimento de expansão. Esse assunto será tratado em outro artigo neste site.

A questão da natureza da matéria escura e da energia escura permanece em aberto, juntamente com muitos outros problemas importantes ainda não foram resolvidos pela ciência. Pela própria natureza da investigação científica cada resposta obtida abre um leque de dúvidas e caminhos para futuras pesquisas. O tema é de grande interesse porque, entre outras coisas, ele pode levar a uma expansão da física para novos domínios, da mesma forma que a mecânica quântica e a relatividade expandiram a física clássica. Se existem partículas fora do modelo padrão de partículas então uma nova física tem que ser desenvolvida para acomodá-las.

Observatório de Ondas Gravitacionais por Interferômetro Laser (em inglês: Laser Interferometer Gravitational-Wave Observatory – LIGO) é um projeto que busca detectar ondas gravitacionais de origem cósmica.

Novos detetores e novas táticas de busca são desenvolvidos a todo momento para tentar verificar ou descartar alguma hipótese. Em outubro de 2017 o Observatório LIGO conseguiu detetar ondas gravitacionais geradas pela interação de duas estrelas de nêutrons girando em órbitas muito próximas e espiralando para seu centro de massa. A observação dessas ondas abre uma nova página na investigação do cosmos e deverá ser usada também para testar hipóteses sobre a matéria escura, em particular a existência de buracos negros primordiais.

É possível que a anomalia observada (o problema da matéria escura) seja devida a erros nos pressupostos cosmológicos, sendo o principal deles considerar que o universo é uniforme, aproximadamente igual em todas as direções e em todas as partes. No estado atual do conhecimento é impossível descartar que nossa posição no universo seja de alguma forma incomum, nos dando uma falsa visão de como seria o todo. Também é possível que uma nova forma da interação gravitacional seja válida para escalas cósmicas, ou que existam forças desconhecidas, além das quatro forças fundamentais. Também devemos nos lembrar que os dados obtidos nessa área são difíceis de se obter e analisar. Mesmo assim grande parte dos cosmólogos e astrofísicos defende que existe a matéria escura. Aqueles que acreditam em coisas diferentes estão propondo teorias alternativas, nenhuma delas ainda com sucesso.

A própria existência de um problema tão importante sem solução até o momento torna a pesquisa ainda mais interessante. A ciência é uma aventura com desdobramentos inesperados. Pessoas no mundo inteiro se unem e trabalham na solução desses problemas. Infelizmente, o processo científico se torna cada vez mais especializado e inacessível para pessoas sem treinamento específico. Para isso servem artigos (como este) e livros de divulgação. A aventura é coletiva e deve ser partilhada com todos.

Bibliografia

Clegg, Brian: Dark Matter & Dark Energy, Icon Books, Agosto 2019.

Bertone, Gianfranco; Hooper, Dan: A History of Dark Matter https://arxiv.org/abs/1605.04909 (16 May 2016).

Panek, Richard: The 4% Universe, Dark Matter, Dark Energy, and The Race to Discover the Rest of Reality, HMH Books & Media, New York, 2011.

Science History: Fritz Zwicky and the whole Dark Matter thing
https://cosmosmagazine.com/physics/science-history-fritz-zwicky-and-the-whole-dark-matter-thing

Universo e Multiverso

De rerum natura
Página de abertura de cópia manuscrita em 1483 do De Rerum Natura

A palavra universo é derivada do Latim universum, originada da contração poética Unvorsum usada por Lucrécio em seu livro De rerum natura (Sobre a natureza das coisas). Ela combina o prefixo uni (um) com vorsum que significa “o que se moveu, girou ou se alterou”. O imagem do todo se movendo como unidade em círculos tem raiz no pensamento grego antigo que visualizava as estrelas e objetos celestes fixos sobre esferas girando em torno do observador humano.

A descrição moderna do universo e sua história é baseada principalmente na Teoria da Relatividade Geral (TRG) de Einstein que descreve a gravitação por meio da curvatura do espaço-tempo. Em escalas cósmicas a gravitação é a única força relevante e a TRG é a ferramenta apropriada para descrever o universo como um todo. Sob a restrição de algumas hipóteses básicas, tais como a de ser a matéria uniformemente distribuída pelo espaço em grande escala, a teoria indica que o universo não pode ser estático – ele deve estar se contraindo ou expandindo. A verificação observacional desta afirmação se deu com a descoberta de Edwin Hubble, em 1029, de que todas as galáxias, exceto aquelas que estão muito próximas da nossa, estão se afastando e a velocidade de afastamento é proporcional à sua distância. As medidas da velocidade de afastamento permitem calcular a quanto tempo toda a matéria e energia estavam condensadas em um volume muito pequeno, denominado de Big Bang ou Grande Explosão, o que ocorreu a aproximadamente 14 bilhões de anos. As hipóteses iniciais, a distribuição uniforme da matéria por exemplo, são verificadas com alto grau de precisão e o modelo ganhou o título de Modelo Padrão por explicar grande número de características hoje observadas.

Embora eficiente para explicar muitas coisas observadas ele não é completo. Não é possível, por exemplo, explicar porque a matéria, a energia e a temperatura estão distribuídas de forma tão uniforme pelo espaço. Não existe uma explicação natural do porque a explosão ocorreu em um determinado momento e nem de onde vem toda a energia necessária para provocar o surgimento de tudo o que vemos hoje. Além disto, entre outros problemas, não temos indicações do motivo de serem as constantes da física finamente ajustadas como são, o suficiente para permitir o surgimento da matéria como a conhecemos e a evolução hoje verificada.

Para descrever o conteúdo material deste universo é necessário lançar mão das teorias existentes da matéria, em particular a teoria quântica das partículas e campos. Estes campos serviram para explicar uma expansão muito rápida em um universo jovem (dentro do primeiro segundo após o Big Bang), no que consiste o modelo inflacionário. A rápida expansão tem o efeito de explicar a homogeneidade, além de estar em plena conformidade com a descrição de como pequenas ondulações ou desvios desta homogeneidade deram origem às grandes estruturas, galáxias e aglomerados. A energia escura foi adicionada mais tarde, sem uma motivação ou esclarecimento teórico mais profundo, mas necessária para explicar a aceleração hoje observada.

Apesar de que, por definição, a palavra Universo expresse um conceito que engloba todas as coisas que existem, em algumas situações surgem na física propostas de inclusão da existência de partes do Universo ou mesmo de outros Universos que poderiam não estão em conexão direta com a nossa realidade. Muitas destas propostas visam corrigir os defeitos do modelo cosmológico padrão. Observe, entretanto, que o conceito de multiversos é altamente especulativo e não deve ser tomado como parte integrante das teorias testadas e aceitas pela comunidade científica.

É importante compreender que a ciência lida com objetos que podem ser verificados por meio da experimentação ou da observação. Qualquer afirmação, esteja ela correta ou não, que não possa ser refutada ou confirmada permanece fora da fronteira do que se pode considerar científico. Desta forma a afirmação de que existem universos paralelos que não interferem em nada com o universo observável constitui uma proposta metafísica ou filosófica até que a sua verificação possa ser efetuada. Esta é a posição de muitos pesquisadores atuais, entre eles o físico inglês Paul Davies, atualmente professor na Universidade do Arizona, que afirmou: “Explicações radicais sobre o multiverso são uma reminiscência de discussões teológicas”.

(1) Como todo sinal ou interação entre partículas se dá, no máximo, com a velocidade finita da luz, dois objetos podem estar separados de tal forma que um não poderá jamais interagir com o outro, causando nele qualquer alteração. Estas são as chamadas separações tipo-espaço. Nada do que ocorre em uma região deste tipo pode ser percebido por nós.

No entanto, mesmo modelos do universo bastante conservadores podem incluir regiões desconectadas umas das outras. Até mesmo em um universo simples que satisfaz apenas à Relatividade Restrita, um mundo sem curvaturas nem dimensões extraordinárias, existem regiões causalmente desconectadas1. O cosmólogo sueco Max Tegmark, professor do Instituto de Tecnologia de Massachussets, preparou uma classificação de teorias que incluem universos com partes ou setores fora do alcance de nosso universo observável. Fazem parte deste grupo de hipóteses os modelos inflacionários onde pequenas regiões do espaço poderiam entrar em uma rápida expansão causada por campos quânticos locais formando novos universos como bolhas desconectadas do universo matriz. Estas bolhas possuem interesse teórico por permitirem a possibilidade da existência de muitos universos, cada um contendo valores diferentes para as diversas constantes cujos valores não podem ser ainda explicadas pela física. Entre muitos universos o nosso seria aquele onde as constantes são exatamente ajustadas para permitir surgimento da matéria e sua evolução em elementos de números atômicos crescentes, depois para o surgimento da vida e, finalmente, da consciência.

Outra possibilidade de multiversos é encontrada em modelos cíclicos, com a possibilidade de nosso universo interromper sua expansão e entrar em fase de contração, seguida de colapso e uma eventual nova explosão, em ciclos eternos. Este modelo esbarra na verificação recente de que o universo atual não está em processo de desaceleração e sim de expansão acelerada.

Um multiverso diferente mas igualmente intrigante é sugerido por uma curiosa interpretação da física quântica chamada interpretação de muitos mundos, uma das diversas tentativas de se encontrar a explicação por trás do mecanismo probabilístico no mundo quântico. Resumidamente este modelo sugere que os vários resultados possíveis de um experimento ocorrem em mundos diferentes. Um exemplo pode esclarecer a questão: o spin de um elétron é uma propriedade quântica que ocorre em dois estados, geralmente denominados para baixo e para cima (up e down). Antes de medir um spin não se sabe em que estado ele se encontra. Se uma medida é realizada verificamos que ele se encontra em um dos estados, digamos, com o spin para cima. Na interpretação de muitos mundos existe um outro universo onde o elétron está com o spin para baixo e a nossa medida teria provocado a escolha por um dos mundos possíveis.

Neil Turok

O conceito de multiverso ganhou um impulso importante na década de 2000 com a proposta de Paul Steinhardt, professor de astrofísica na Universidade de Princeton, e Neil Turok, professor de física matemática em Cambridge. Steinhardt e Turok buscavam explicar as características atuais observadas, principalmente a homogeneidade e a ação de energia e matéria escuras. Eles sugeriram um universo eterno e cíclico sem a necessidade da contração e colapso do universo atual.
O modelo matemático proposto é complexo mas fornece imagens interessantes. O universo seria composto por duas folhas paralelas e infinitas separadas por uma distância microscópica. Em uma das folhas está o espaço-tempo onde vivemos. A separação entre elas se dá em uma dimensão extra que não podemos ver nem testar experimentalmente com a tecnologia hoje existente. As folhas estão se expandindo em acordo com o modelo padrão. A temperatura ou densidade de matéria nunca seriam infinitas como sugere o modelo padrão. Em cada um dos ciclos o universo se inicia com uma explosão, com alta densidade de matéria-radiação e atravessa um período de expansão e resfriamento similares ao que ocorre no modelo padrão e que explica muitas características hoje observadas. Este modelo substitui a energia escura e o campo inflacionário por um único campo que oscila de forma a provocar a expansão e, mais tarde, sua desaceleração. Por isso ele requer menor quantidade de hipóteses, o que é visto como algo positivo pela mentalidade científica. Ele combina conceitos físicos bem estabelecidos com outros que são teoricamente bem aceitos mas ainda não verificados na observação, tais como a teoria das cordas e membranas, ambas destinadas a solucionar o problema da unificação entre o campo gravitacional e os demais campos.

(2) A decaimento da energia armazenada em um campo sob forma de matéria ou radiação é previsto na Relatividade Especial, e é dada pela equação E = mc2.

Quando o universo atinge aproximadamente a idade atual, 14 bilhões de anos após a explosão, a expansão é acelerada. Isto resolveria um dos principais problemas do modelo padrão onde um universo constituído apenas de matéria comum só poderia se desacelerar, uma vez que a gravitação é apenas atrativa e cada galáxia atrai todas as demais, contrariamente ao que hoje se observa. Trilhões de anos mais tarde o universo com o mesmo conteúdo de matéria-energia tem um volume muito grande e, por isto, baixa densidade e temperatura, e a expansão é interrompida. Neste ponto, segundo o modelo, um campo de energia que existe por todo o universo decai2 sob a forma de matéria e radiação, dando origem a um novo big-bang e um novo ciclo dai decorrente. As folhas interromperão sua expansão e começarão a se aproximar uma da outra com o colapso da quinta dimensão (que começará a se encolher). Elas entram em colisão de forma não completamente homogênea, uma vez que as oscilações quânticas provocam ondulações no espaço, e se repelirão, como se rebatidas ou quicadas, um efeito também quântico. O impacto da colisão transferirá sua energia para preencher mais uma vez o espaço com a matéria-energia quente e densa, em um novo Big Bang. A explosão provoca a retomada da expansão e um novo ciclo de resfriamento, aglutinação de estrelas e galáxias e formação de um novo universo similar ao atual.

O modelo Steinhardt e Turok

Não é fácil compreender o significado da expansão do espaço-tempo. Se for infinito ele não fica maior mas a separação entre pontos deste espaço é crescente, o que é percebido pelo afastamento das galáxias. As folhas ou membranas não são universos paralelos, como propõem outro grupo de teorias. Elas são partes de um mesmo universo, uma delas contendo a matéria comum que conhecemos e a outra com conteúdo que permanece, por enquanto, desconhecido. As duas folhas interagem apenas por meio da gravidade, objetos com massa em uma folha atraindo a matéria que se encontra na outra, algo que poderá vir a ser uma explicação para a presença da matéria escura, cujo efeito sobre a matéria comum é observado no universo atual e modifica o movimento dos objetos celestes.

Alguns pesquisadores consideram este modelo um avanço por ele fornecer respostas, ou pelo menos indicações de respostas, para problemas não resolvidos no modelo padrão. No panorama atual não há qualquer indicação sobre o que existia antes da Grande Explosão, sobre o que deu origem à matéria hoje observada, ou porque e como o campo primordial entrou em relaxamento cedendo sua energia para a formação da matéria. Além disto o modelo reproduz corretamente a descrição padrão no intervalo de tempo entre o Big Bang e o presente. Mas ainda não se pode concluir que suas demais previsões estejam corretas. Ele permanece como uma conjectura bastante especulativa, mas uma possibilidade que pode um dia ser comprovada ou levar à novos paradigmas do entendimento.

(3) Para uma diferenciação entre modelos, teorias especulativas e teorias comprovadas leia Teoria, Hipótese e Modelo em Física.

Historicamente os grandes avanços proporcionados pelo sucesso teórico de Einstein levaram muito estudiosos a investir tempo e esforço em propostas especulativas, muitas vezes distanciadas do observado e que permanecem muitos anos sem serem verificadas ou descartadas. Infelizmente a divulgação científica em nosso país é deficiente e notícias sobre modelos especulativos, como o de Turok, acabam por criar confusão para aqueles que buscam se informar sobre ciência moderna. A especulação é válida, interessante e pode ensinar muito sobre o avanço científico. No entanto, divulgadores e leitores devem manter em mente uma clara distinção entre as abordagens especulativas e o conteúdo científico verificado e aceito3.

Resta aos proponentes deste modelo aperfeiçoá-lo e extrair dele novos comportamentos que possam ser observados e que não são explicados por nenhuma das demais teorias candidatas. O fato de que existe um modelo matemático internamente consistente é uma boa motivação para que novos pesquisadores se dediquem a aprofundar o entendimento deste modelo, refazendo alguns aspectos e explorando suas consequências. No entanto a consistência lógica e matemática não é suficiente. Ela deve ser extendida para o domínio da verificação empírica antes que esta seja considerada uma teoria física aceita. E aos pesquisadores motivados e entusiasmados com seus próprios projetos de deve pedir que saibam diferenciar, para o grande público, a especulação da teoria aceita.

O modelo ou hipóteses aqui descritos são, até o momento, especulativos, tentativas de se explicar diversos problemas no modelo do Big Bang padrão.

Para uma diferenciação entre modelos, teorias especulativas e teorias comprovadas e aceitas leia: Teoria, Hipótese e Modelo em Física. Leia mais sobre cosmologia.

É importante compreender que a ciência lida com objetos que podem ser verificados por meio da experimentação ou da observação. Devemos acreditar na ciência?

Problemas com o Modelo Padrão

Deep Field: Imagem obtida pelo Hubble Space Telescope
(1) Homogeneidade é a propriedade do espaço de ser basicamente, pelo menos em média para grande escalas, independente do ponto onde se olha. As diversas partes do universo possuem a mesma densidade de matéria e radiação. Isotropia é a invariância destas propriedades com relação à direção. O universo é idêntico, para todos os lados que se olhe. Esta homogeneidade e isotropia não ocorrem em todas as escalas. No nível das galáxias, por exemplo, a matéria está concentrada nestas galáxias, que são muito mais densas no núcleo do que em suas bordas. Além disto as galáxias estão separadas entre si por grandes distâncias. Em níveis maiores elas tendem a se agrupar em aglomerados galáticos e, portanto, também não existe homogeneidade nesta escala. A homogeneidade aparece em escala muito maiores e isto pode ser verificado através de correlações entre distribuição e escala ou através de medições feitas sobre a radiação cósmica de fundo. Leia mais sobre o modelo padrão do Big Bang ou sobre a radiação cósmica de fundo.

O modelo do Big Bang é uma consequência da Teoria da Relatividade Geral, TRG, sob a hipótese de que o universo é homogêneo e isotrópico(1). Este modelo é bem sucedido em explicar características observadas, em especial o afastamento das galáxias descoberto por Edwin Hubble e a radiação de fundo na faixa de microondas. Vale enfatizar que, neste quadro, o universo não existiu sempre, tendo passado por um momento específico a aproximadamente 14 bilhões de anos. A pergunta sobre o que existia antes do Big Bang não possui qualquer significado, da mesma forma que uma pessoa postada sobre o pólo norte não pode prosseguir caminhando em direção ao norte.

No entanto ela introduz um número de problemas ainda não resolvidos, entre eles o motivo para que o universo esteja tão perto de sua densidade crítica (ou porque ele é hoje um universo plano), de como ele alcançou a homogeneidade hoje verificada embora não exista a possibilidade de contato entre regiões causalmente separadas, ou mesmo sobre o que teria motivado a própria explosão inicial. Existe razoável consenso entre os pesquisadores da área de que a TRG, que é a estrutura matemática por trás da descrição do espaço-tempo, não é uma boa teoria para a descrição dos estados que ocorreram logo após o big bang quando matéria e energia se encontravam em estado de alta densidade e a temperatura era muito elevada. É muito provável que uma descrição quântica da gravitação seja necessária para uma descrição apropriada deste período. Esta descrição, pelo menos por enquanto, não existe.

A TRG explica a gravitação em termos de modificações na curvatura do espaço-tempo causadas pela presença de matéria-energia. A teoria é elegante, matematicamente consistente e verificada experimentalmente em todos os tipos de experimentos e observações possíveis até o presente.

(2) Na natureza existem apenas quatro campos identificados: o campo gravitacional, campo eletromagnético, campo nuclear fraco e campo nuclear forte. É possível hoje mostrar que, em altas temperaturas (portanto altas energias), tais como as encontradas logo após o big bang, estes campos, exceto o gravitacional, se tornam unificados e a teoria quântica de campo é o embasamento teórico para esta unificação. A teoria quântica de campo não faz nenhum uso de alterações na geometria do espaço como a TRG mas explica as interações entre partículas subatômicas por meio de trocas de partículas virtuais.

(3) Em breve publicaremos neste site um artigo exclusivamente sobre a constante cosmológica e sua história.

Por outro lado houve também um grande avanço na explicação dos demais campos de força2. Na década de 1980 foi proposto o modelo inflacionário que se utiliza de campos quânticos para promover um crescimento muito rápido no universo inicial. Considera-se hoje que a inflação é a responsável pela explosão e explica algumas características hoje observadas, tais como porque o universo se encontra tão próximo da densidade crítica e porque é tão homogêneo. Além disto as pequenas distorções ou inomogeneidades observadas na radiação cósmica de fundo são compatíveis, dentro do panorama da inflação, com a formação de galáxias e grandes estruturas como aglomerados galáticos.

Independente do sucesso ou não deste modelo é necessário incluir a presença de campos quânticos e a provável existência de uma constante cosmológica, tal como proposta por Einstein ou alguma alternativa na forma de termos cosmológicos variáveis com o tempo. De fato tornou-se um problema adicional a explicação de como o universo sai da fase inflacionária e existem evidências observacionais de que ainda existe, mesmo no presente, uma pressão para a expansão, o que poderia ser explicado pela presença de uma constante cosmológica3.

Representação artística de um buraco negro: uma região de altíssima curvatura no espaço-tempo, de onde nem a luz consegue escapar.

O fato de que a TRG prevê seu próprio fracasso em algumas regiões do espaço tempo, dentro das chamadas singularidades representadas por buracos negros ou pelo própio Big Bang, é suficiente para que se investigue uma descrição alternativa, provavelmente uma extensão, no mesmo sentido em que a teoria da relatividade especial é uma extensão da mecânica clássica e a relatividade geral é uma extensão da especial. Além disto a existência de teorias reconhecidamente eficientes para a explicação da natureza dentro de seus respectivos domínios mas inconsistentes entre si em um domínio comum, tal como ocorre com a teoria quântica de campos e a teoria da gravitação, impulsiona a busca de uma nova teoria. Como se acredita que esta teoria deve incorporar características da física quântica ela tem recebido o nome de Gravitação Quântica, GQ.

Perturbações em escalas de 10-33 cm nos campos e na densidade de partículas faz com que o espaço-tempo tenha uma natureza de “espuma” nesta escala.

Um raciocínio simples aponta para a necessidade de uma descrição especial para a gravitação ou para o espaço tempo em níveis microscópicos. Suponha que estamos analisando uma região vazia do espaço-tempo onde nenhuma matéria ou energia tenham sido detectadas. Temos neste caso um espaço plano, matematicamente denominado espaço-tempo de Minkovsky. Suponha ainda que passamos a analisar este espaço-tempo com microscópios poderosos para compreender o que ocontece com o espaço em escalas muito reduzidas. De acordo com a teoria quântica nenhum dos campos físicos existentes pode ser relaxado ou enfraquecido até um nível completamente nulo. Como todos os osciladores, mecânicos ou não, o nível mínimo de energia não é nulo ou, dito de outra forma, o estado fundamental de qualquer oscilador encontra-se acima do zero. Estes campos carregam energia e portanto devem provocar a curvatura do espaço. Alternativamente se pode imaginar outro quadro: microscopicamente a teoria quântica permite a criação de partículas virtuais acompanhadas de suas antipartículas, desde que elas surjam e se aniquilem rapidamente de modo a não contrariar o princípio da incerteza. Estas partículas carregam massa e energia e portanto curvam o espaço-tempo. Pode-se portanto esperar que o espaço-tempo tenha uma estrura ultra granulada, como se fosse uma espuma de bolhas, em um nível muito pequeno. Esta espuma deve afetar os fenômenos, pelo menos em níveis microscópicos ou de altas energias.

(4) Com o fim da guerra fria ocorreu uma drástica uma diminuição no nível de investimento em pesquisa básica no mundo todo. Os aceleradores estão se tornando cada vez mais caros, só se tornando possível em empreendimentos cooperativos envolvendo diversas nações.

Existem diversas formulações candidatas concorrentes ao título de Gravitação Quântica, GQ. Entre elas está teoria das cordas em suas diversas modalidades, loops (ou laços) ou teorias quânticas não-perturbativas. Além de sua importância em cosmologia se espera dai uma explicação para muitas questões não respondidas, tais como um tratamento mais completo de singularidades, a compreensão de aspectos quânticos dos buracos negros e, possivelmente, sobre a natureza da energia escura. Toda teoria física deve fornecer previsões que podem ser verificadas sob o crivo da experimentação e observação, e estas não são exceções. No entanto as predições testáveis destas teorias ocorrem em regime de altíssimas energias que ainda não podem ser obtidas nos aceleradores de partículas atuais. Por isto existe uma corrida4 para a construção de aceleradores maiores e melhores e eventualmente será possível discernir quais destas teorias, se houver alguma, estão corretas ou não. Outra possibilidade de teste consiste na observação astrofísica de buracos negros, de eventos cósmicos de altas energias e da própria cosmologia.

Além de passar por estes testes uma boa candidata à teoria da GQ deve se resumir à Relatividade Geral no domínio de baixas energias, assim como objetos em velocidades relativísticos passam a ser muito bem descritos quando sua velocidade baixa até um nível muito inferior à velocidade da luz.

Teoria das Cordas, Universos sem um Início

(5) A “Teoria” das cordas não é de fato uma teoria, mas um modelo proposto ou uma hipótese. Para uma diferenciação entre modelos, teorias especulativas e teorias comprovadas e aceitas leia: Teoria, Hipótese e Modelo em Física.

Uma das “teorias”5 tentativas promissoras e muito interessantes para a descrição de uma gravitação quântica, reconciliando a mecânica quântica e a gravitação, tal como descrita pela teoria da relatividade geral, é teoria das cordas ou string theory. A principal motivação para se considerar uma teoria deste tipo é a procura pela chamada Teoria de Tudo (Theory of Everything – TOE), uma forma matemática unificada de descrição da matéria e dos quato campo conhecidos. A teoria das cordas propõe que partículas elemtares, tais como eletrons e quarks, não são objetos pontuais (adimensionais), como são tratados na formulação clássica e mesmo na mecânica quântica padrão, mas sim pequenas cordas oscilantes e vibratórias, objetos unidimensionais. Os primeiros modelos de cordas incluiam apenas bósons, partículas de spin inteiro tais como o fóton e outras partículas que servem de mediadoras entre os campos de força. Mais tarde foram propostos modelos como os de Supercordas onde se pretendia uma supersimetria envolvendo bósons e férmions (elétrons, por exemplo). Curiosamente o tratamento matemático destes modelos envolve a existência de dimensões extras além das quatro dimensões do espaço-tempo usuais. Como estas dimensões extras não são observadas se desenvolveu um mecanismo de compactação destas dimensões que adquirem altas curvaturas e se tornam algo como pequenas bolas anexadas a cada ponto do espaço físico.

A teoria das cordas ou strings parte do pressuposto de que as partículas elementares não são pontos mas sim pequenas cordas.
Imagem modificada à partir de imagem na Wikimedia Commons, sob licensa Creative Commons.

Na década de 1990, em uma tentativa de apresentar um modelo que engloba os diferentes modelos de supercordas existentes, foi proposta a Teoria-M, (M de membrana) onde as cordas são vistas como cortes de membranas vibratórias que existem em 11 dimensões. Alguns físicos consideram que a teoria das cordas e seus aperfeiçoamentos são um passo importante na compreensão da teoria unificada, enquanto outros a criticam por não fornecerem previsões quantitativas suficientes para que possam ser comprovadas ou descartadas pela experimentação.

Apesar de parecer excessivamente especulativo o conceito de cordas carrega consigo alguns aspectos interessantes. Para entender isto podemos considerar um mero eletron como partícula pontual. Na descrição usual de partícula seu campo gravitacional e elétrico ambos são proporcionais a 1/r2 sendo portanto singulares em r=0 (assumem valores que tendem a infinito quando r tende a zero). Em outras palavras tanto o campo gravitacional quanto o elétrico tendem a infinito nas proximidades do eletron que carrega, portanto, infinita energia! Esta dificuldade é removida se sua massa e carga (e outras propriedades) estão distribuídas ao longo de uma corda ou membrana.

A falta de comprovação, no entanto, não impede que muitos cosmólogos apliquem os conceitos das cordas em seus modelos cosmológicos, obtendo alguns resultados interessantes apesar de altamente especulativos. Um exemplo disto esta descrito no artigo Modelo de Steinhardt e Turok.



Desvio para o vermelho e a lei de Hubble

O desvio para o vermelho (redshift) é um fenômeno ótico ocasionado pelo afastamento da fonte de luz e um caso particular do conhecido efeito Doppler. Também pode ocorrer desvios para o vermelho devido a efeitos gravitacionais, um caso que será tratado em outra parte.

Fonte vibratória em movimento

Christian Doppler foi o primeiro a dar uma explicação física para o fenômeno e também a prever que ele ocorre em qualquer tipo de onda, mecânica ou eletromagnética. Foi ele também quem sugeriu que o efeito pudesse ser usado para medir velocidades de objetos celestes.

Para compreender o efeito vamos primeiro nos lembrar do que ocorre quando observamos um carro de corrida se aproximando em alta velocidade. O ronco do motor é mais agudo na aproximação. Depois que o carro passa por nós e se afasta o ronco se torna mais grave. Na aproximação um número maior de frentes de ondas atinge nossos ouvidos por unidade de tempo e interpretamos isto como aumento da frequência (mais agudo). No afastamento um número menor de frente de ondas nos atinge no mesmo tempo, o que interpretamos como diminuição da frequência (mais grave).

A luz vermelha tem a seguinte frequência e comprimento de onda:
4 × 1014 HZ — 7,5 × 10-7m
A luz violeta, no outro extremo do espectro:
7,6 × 1014 HZ — 3,9 × 10-7m

Efeito idêntico ocorre com a luz, que é uma forma de radiação eletromagnética e vai desde o vermelho até o violeta. Um objeto com cor conhecida e que se afasta em alta velocidade tem a sua cor deslocada em direção ao vermelho e medida deste desvio pode ser usada para determinar sua velocidade. Da mesma forma se o objeto se aproxima sua cor é desviada em direção ao azul, ou seja, tem a sua frequência aumentada.

Para medir a velocidade de uma estrela ou galáxia distante é necessário conhecer a cor de alguma radiação emitida por ela e isto é possível devido à mecânica quântica. Os gases contidos em objetos quentes emitem luz em faixas ou cores muito bem definidas que dependem do material de que são compostos. Estes espectros de emissão funcionam como assinaturas específicas de cada elemento, átomo ou molécula e servem para identificá-los na Terra ou nas estrelas. Desta forma foi possível identificar o elemento químico hélio no Sol em 1868, antes que pudesse ser detectado na Terra, uma vez que ele é abundante nas estrelas e raro em nosso planeta.

Linhas de emissão (ou absorção) são deslocadas no espectro
Ainda não se sabia, naquela época, que as nebulosas eram objetos fora de nossa galáxia.

O astrônomo americano Vesto Slipher, em 1912, estudando os espectros observados de nebulosas espiraladas descobriu que as linhas espectrais de elementos conhecidos estavam presentes nas nebulosas mas deslocados de suas posições padrões. Estes deslocamentos foram interpretados como devidos ao afastamentos dos objetos observados.

Desvio para o vermelho provocado pelo afastamento

Mais tarde, em torno de 1919, Edwin Hubble iniciou um projeto de medida de distâncias de nebulosas espiraladas e estrelas conhecidas como cefeidas, usando o telescópio de Hooker de 2,5 m de diâmetro, considerado grande para aquela época. Ele provou que as nebulosas, incluindo Andrômeda, estavam longe demais para fazer parte de nossa galáxia e que eram, de fato, grandes aglomerados de estrelas como a nossa Via Láctea, ou seja, são galáxias como a nossa! Em seguida, combinando o conhecimento das distâncias destas galáxias com o seu desvio para o vermelho Hubble e Humason mostraram que existe uma proporcionalidade: quanto mais distante um objeto celeste mais rápido ele se afasta de nós. Apenas galáxias no nosso grupo local, entre elas a própria Andrômeda, estão se aproximando. Esta observação é compatível com a descoberta teórica feita pelos físicos e matemáticos que exploravam as consequências da Teoria da Relatividade Geral de Einstein e com o modelo cosmológico decorrente, bem como com a observação feita por Penzias e Wilson da radiação cósmica de fundo, na faixa das microondas.

A lei de Hubble é expressa pela equação v = H0D onde H0 é uma constante de proporcionalidade denominada constante de Hubble, D é a distância da galáxia considerada e v é a sua velocidade. A constante de Hubble é frequentemente dada em unidades de (km/s)/Mpc, (quilômetros por segundo) por megaparsec sendo que 1 parsec é, aproximadamente, 31×1012 km ou 3.26 anos-luz.

Uma medida recente da constante de Hubble, realizada pelo Telescópio Espacial Hubble em 2009, fornece o valor de H0 = 74.2 ± 3.6 (km/s)/Mpc. A medida desta constante, juntamente com o modelo padrão da cosmologia, nos leva à conclusão de que o universo tem aproximadamente 14 bilhões de anos!


Por que o céu noturno é Escuro?

🔻Final do artigo

Suponha que uma pessoa é curiosa e tem uma mente investigativa mas não dispõe de recursos tecnológicos, tais como grandes telescópios, ou teóricos, como a Teoria da Relatividade Geral de Einstein. Existe alguma maneira pela qual ele perceba que o universo não é simultaneamente infinito e estático?

Este investigador sem recursos sai à noite para observar as estrelas e percebe, como todos sabemos, que o céu éescuro à noite, exceto pelo brilho pontual das estrelas, dos planetas e galáxias. Sabemos ainda, embora o observador sem recursosnão o possa notar, que existe também uma radiação abrangente e uniformemente espalhada pelo espaço, aradiação cósmica de fundo que não é visível por estar na faixa de frequência das microondas. No geral o céu noturno é escuro. Nosso pensador, no entanto, supõe que o universo é infinito e estático e que existe um número enorme de estrelas espalhadas de modo aproximadamente uniforme pelo espaço. Em qualquer direção em que ele olhar para o céu haverá uma estrela uma vez que o universo é infinito (ou muito grande).

Figura 1: O Paradoxo de Olber

Figura 1A área da casca esférica (a superfície da esfera representada na figura pelo círculo verde) cresce com o quadrado da distância, enquanto o brilho das estrelas decai de modo inversamente proporcional ao quadrado desta distância. Como se partiu da suposição de que a densidade é a mesma, na média, então o número de estrelas é maior na medida em que se afasta do observador. Este número maior compensa o efeito da queda de luminosidade devido à distância.

É claro que as estrelas mais distantes parecerão ser menos brilhantes mas, por outro lado, haverá um número maior delas para camadas mais distantes, como está ilustrado na figura 1. A intensidade do brilho diminui com o inverso da distância ao quadrado, mas o número de estrelas aumenta proporcionamente com o quadrado da distância de forma que os efeitos se cancelam e o céu noturno deveria ser brilhante, pelo menos com brilho similar ao do disco solar, visto aqui da Terra.

Este é o chamado paradoxo de Olber e foi, na verdade, percebido muito antes de Olber. O astrônomo Edward Harrison1 descreve que Thomas Digges, matemático e astrônomo inglês, percebeu ainda no século XVI problema do brilho do céu noturno. Digges era um defensor do sistema Copernicano e foi o primeiro asugerir que, além da esfera das “estrelas fixas” havia um espaço infinito e “repleto de estrelas”. Também Kepler descreveu o problema em 1610, embora uma forma mais moderna de compreensãodo mesmo só tenha surgido no século XVIII com o trabalho de Halley e Cheseaux. O astrônomo alemão Heinrich Olber voltou a levantar a questão em 1823 e a tornou mais conhecida, sem ter alcançado uma compreensãode sua solução. Lord Kelvin, segundo Harrison, foi o primeiro a apresentar uma tentativa de solução. Curiosamente o escritor Edgar Allan Poe2, antes de Kelvin, fez uma descrição simples de sua solução.

(1) 1987. Harrison, Edward: Darkness at Night: A Riddle of the Universe, Harvard University Press. ISBN 9780674192706.

2) A citação de Poe, aqui em livre tradução, é uma antecipação da explicação oferecida por Kelvin: “Se houvesse uma sucessão infinita de estrelas o fundo do céu nos pareceria brilhar com luminosidade uniforme, como a exibida na Galáxia – uma vez que não existiria nenhuma direção para a qual se olhasse sem que uma estrela lá estivesse. Portanto a única maneira de compreendermos esta situação, de acomodarmos a noção de que os telescópios podem mostrar grandes vazios em diversas direções, é através da suposição de que as distâncias cósmicas são tão gigantescas que nenhum raio de luz das estrelas distantes foi até agora capaz de nos alcançar.”

Esta não é, infelizmente, uma explicação correta para o suposto paradoxo.

(3) A radiação cósmica de fundo é bastante uniforme mas não completamente! Pequenos desvios na homogeneidade ou “caroços” em regiões um pouco mais quentes ou mais frias são exatamente o que se deveria esperar à partir das teorias de geração das estruturas, tais como galáxias e grupos de galáxias. Se a matéria-energia primordial fosse completamente homogênea nenhuma estrutura seria formada.

Algumas tentativas de solução foram apresentadas:
  1. o espaço é permeado por grande quantida de poeira que impede a passagem da luz,
  2. existe apenas um número finito de estrelas,
  3. a distribuição das estrelas não é uniforme,
  4. o universo é muito jovem e a luz das estrelas distantes ainda não nos alcançou,
  5. o universo está se expandindo.

A primeira tentiva consiste em supor que existe matéria espalhada pelo espaço e que esta poderia impedir a passagem da luz das estrelas distantes. No entanto, ao absorver luminosidade (que é uma forma de radiação e transporta energia) a poeira se aqueceria a passaria a emitir luz por conta própria. Por outro lado uma quantidade muito grande de poeira obscureceria nosso Sol e poderia ser detectada da Terra, algo que não acontece.

Quanto a segunda resposta, é possível (mas não muito provável) com base no que se conhece hoje que o universo seja finito e exista um número finito de estrelas. No entanto o número de estrelas e outros objetos celestes já conhecidos e catalogados já é suficientemente grande para iluminar o céu noturno.

A discussão da terceira tentativa de explicação do problema é um pouco mais complexa e está discutida com mais detalhe no artigo principal sobre cosmologia. Em resumo, apesar de exibir claramente desvio de uniformidade em escalas menores, como pode ser observado nos sistemas planetários, nas galáxias e mesmo nos agrupamentos galáticos, o universo aparenta ser aproximadamente homogêneo em escalas muito grandes, bem maiores que a de agrupamentos de algumas poucas galáxias! A homogeneidade da radiação cósmica de fundo é outro bom argumento de que o universo é homogêneo em grande escala3.

A quarta premissa é um pouco mais complexa e exige um conhecimento matemático um pouco mais detalhado para sua compreensão. Apenas para não deixar de todo a questão sem tratamento, adiantemos algum conteúdo para análise e apreciação! O Big Bang não representa apenas a origem do conteúdo material do cosmos, mas também do espaço e do tempo. De acordo com a Teoria da Relatividade o próprio espaço se expande e o tempo teve um início. Não existia nada antes do início, nem matéria, nem o espaço e nem o próprio tempo. A informação mais antiga que temos da explosão é representada pela radição cósmica de fundo e ela está fria demais para iluminar o céu noturno!

O Universo Observável é composto de tudo aquilo que emitiu radiação e esta radição nos alcança no presente. Como a velocidade da luz é finita é possível que existam partes do universo não observadas mas isto nos remete a um terreno pouco físico, uma vez que estas regiões não nos afetam de forma alguma. Além disto seria surpeendente se regiões distantes de nossa observação, se existirem, fossem muito diferentesda região observado, que apresenta grande grau de uniformidade e homegeneidade. Além disto a homogeneidade da radição de fundo é uma indicação de que houve tempo suficiente para que as diversas regiões do espaço interagissem entre si atingindo a homogeneidade.


A última das possibilidades é geralmente apresentada como a melhor solução para o paradoxo (que portanto não é um verdadeiro paradoxo!). Com a expansão universal as estrelas, galáxias e tudo o mais que emite luz estão em velocidades que são mais altas para objetos mais distantes e o efeito do desvio para o vermelho enfraquece o brilho desta radiação.

Desta forma, uma pessoa desprovida de instrumentos poderia ter percebido, antes das medidas do deslocamento feitas por Hubble, que o universo não pode ser simultaneamente estático e infinito.

🔺Início do artigo


Cosmologia, a Estrutura do Universo

O Céu pode cair sobre nossas cabeças?

Uderzo e Goscinny criaram a história em quadrinhos de Asterix e a famosa tribo gaulesa que teria vivido aproximadamente 50 anos antes da Era Cristã. Quase toda a Gália havia sido ocupada pelos romanos, exceto por uma pequena aldeia povoada por bravos guerreiros gauleses que, isolados, resistiam ao invasor. Com a ajuda do druida da aldeia, que lhes fornecia uma poção de invencibilidade, eles levavam uma vida despreocupada e divertida e nada temiam … exceto que o céu lhes caísse sobre as cabeças.
 

É claro que todos os que leram aquelas histórias se divertiram com esta questão. Mas isto não elimina a necessidade da pergunta: pode o céu cair sobre as nossas cabeças?
(1) Exploraremos com maior cuidado o significado desta última formulação da pergunta!
(2) A palavra cosmologia vem do grego κοσμολογία, kosmos, “universo” e logia, “estudo”) e representa uma tentativa de apreender racionalmente o Universo em sua totalidade, a distribuição e estrutura de seu conteúdo, o mecanismo de sua formação e seu desenvolvimento futuro.

Talvez a pergunta possa se revestir de maior credibilidade se a colocarmos sob outra forma: “o céu, o firmamento, as estrelas e o próprio universo são eternos?” Ou ainda, sob forma mais técnica: “Existem soluções estáveis para o movimento dos objetos celestes que hoje conhecemos?”(1)

As pessoas, em todos os tempos, sempre se perguntaram sobre a origem do mundo, sobre como ele está hoje estruturado e como será o seu final, caso venha a existir um final. Esta é a questão básica da cosmologia(2). A maior parte deste esforço foi feito sob a forma de mitologia e filosofia, cada uma destas com seu próprio valor e capacidade de abrangência. Mas apenas recentemente foi possível obter um tratamento científico para estas dúvidas e muitas respostas interessantes são daí decorrentes.

A maior parte do que hoje sabemos sobre cosmologia é uma aplicação direta da Teoria da Relatividade Geral de Einstein, que passaremos a denominar simplesmente por TRG. Logo que Einstein completou a sua teoria ele percebeu que ela seria uma ferramenta importante na compreensão do universo. O motivo não é difícil de se entender. Hoje conhecemos apenas quatro tipos de forças ou interações físicas: as forças nucleares fraca e forte, eletromagnética e gravitacional. As forças nucleares são poderosas mas possuem campo de atração muito restrito. Elas decaem rapidamente quando se afasta das cargas e só são importantes nas proximidades no núcleo atômico. Os campos eletromagnético e gravitacional têm o mesmo tipo de decaimento com a distância mas as cargas elétricas positivas e negativas existentes em um planeta, digamos, se cancelam. A carga gravitacional, que é composta por toda e qualquer partícula com massa não nula, é única. Nas escalas do afastamento entre planetas, entre as estrelas e galáxias a gravitação é o único campo efetivo.

Quando Einstein e outros cientistas aplicaram a nova TRG ao estudo do Universo eles logo perceberam que não havia uma solução estática o que causou uma certa comoção uma vez que, com base no pensamento ocidental vigente na época, se esperava que o universo fosse eterno e imutável. Buscando tornar a solução de seu universo estática Einstein acrescentou, de forma bastante arbitrária, um termo extra às equações que descreviam a gravitação. Este termo foi denominado Constante Cosmológica e, apesar de não resolver o problema a que se destinava, teve papel importante e ainda não completamente esclarecido no estudo da cosmologia. Mesmo com a constante cosmológica o universo seria instável de forma que ele abandonou este termo dizendo que aquele havia sido o maior erro de sua vida.

Façamos uma pequena digressão para compreender melhor o que são soluções estáticas ou não estáticas para o universo. Para isto considere, por um momento, que a teoria de Newton é completamente correta (como se acreditava até a apresentação do trabalho de Einstein). Segundo a teoria newtoniana dois corpos materiais se atraem na razão direta de suas massas e inversa do quadrado da distância entre eles. Esta teoria é suficiente para explicar a maior parte das órbitas planetárias, dos cometas e dos satélites. Ela só deixa de ser válida em situações onde a atração da gravidade é muito alta, o que ocorre nas proximidades de corpos gigantes, quando passa a ser necessário utilizar a TRG. Como todos os objetos massivos se atraem, no caso de um universo finito, todos os planetas, estrelas e galáxias cairiam uns sobre os outros formando um grande aglomerado de massa mais ou menos no centro deste universo. Pode-se também imaginar um universo infinito, de forma que cada bloco de matéria tivesse a mesma quantidade de matéria por todos lados de modo a atração fique equilibrada. Neste caso, para ser estático ele teria que ser completamente homogêneo, com igual densidade em todas as partes. Qualquer pequeno aglomerado mais denso de matéria faria que que se iniciasse um processo de aglutinação. Sabemos, é claro, que o universo não é completamente homogêneo. Se assim fosse não existiram sistemas planetários, galáxias e aglomerados de galáxias como os que são hoje observados.

Concluimos portanto que, mesmo no panorama newtoniano, não é possível que o universo seja estático. Um astrônomo ou físico, de posse apenas da física clássica newtoniana, poderia ter anunciado ao mundo muito antes de Einstein que o universo deve ser dinâmico, que não pode estar em um estado de constância e permanência!

Resta uma possibilidade: o universo está de fato caindo em direção à algum ponto ou se expandindo! E esta dúvida deve ser esclarecida por meio da observação astronômica.

Edwin Hubble

A resposta foi encontrada por Edwin Hubble, entre outros astrônomos. Em torno do ano de 1919 foi concluída a construção de um grande telescópio (para os padrões da época – ele tinha 2.5m de abertura!). Até então se acreditava que o universo era constituído apenas pela Via Láctea. Hubble identificou objeto celestes, antes conhecidos como nebulosas, como sendo estruturas gigantescas de estrelas muito além dos limites da Via Láctea. De fato elas consistiam em outras galáxias análogas à nossa, e existiam em abundância. Hubble observou, por meio do chamado efeito de “desvio para o vermelho” que as galáxias estavam, em sua maioria, se afastando da nossa e que, quanto mais distantes estão, mais rápido é este afastamento. Esta observação leva a diversas conclusões interessantes: no passado toda esta massa de objetos celestes estava muito mais próxima; o universo teve um início, o momento em que a massa universal partiu em sua viagem de expansão; a temperatura do universo era muito maior no passado; e, finalmente, algum efeito produziu a expansão. é o que chamamos hoje de Big Bang ou a Grande Explosão e, com esta verificação, abandonamos a tentativa ou a esperança de encontrar uma descrição do universo consistente com um universo estático e imutável.

Voltando para a teoria de Einstein, para chegar ao chamado Modelo Padrão da Cosmologia foi necessário fazer algumas hipóteses (que, é claro, devem ser verificadas pela observação). As equações de Einstein descrevem o campo gravitacional. Diferentemente das teorias anteriores desenvolvidas na física, onde o espaço em que agem as forças e ocorrem os movimentos é tomado à priori como sendo conhecido, elas tem como solução o próprio espaço-tempo. Dito de uma forma simples e resumida a TRG associa a presença da matéria à geometria do espaço-tempo. Matéria deforma o espaço-tempo que, por sua vez, altera a trajetória das partículas que nele viajam. Estas equações são tecnicamente conhecidas como equações diferenciais, como são praticamente todas as demais equações da física, mas, diferente das equações de Newton, são não-lineares e, em geral, de difícil solução.

O primeiro passo importante para o estabelecimento de um modelo universal realista foi proposto pelos esforços conjuntos dos físicos e matemáticos Friedmann, Lemaître, Robertson e Walker (que passaremos a chamar de FLRW, para simplificar). Estes pensadores partiram da suposição inicial de que o conteúdo de massa do universo é homogêneo (ou, pelo menos aproximadamente homogêneo), isotrópico e simplesmente conexo. A homogeneidade significa que regiões distintas do universo possuem a mesma densidade, a isotropia significa que o universo tem aproximadamente as mesmas propriedades independente da direção em que se olhe. Ele é conexo se é possível, em princípio, viajar de uma região qualquer para outra qualquer sem abandonar o universo.

A homogeneidade, é claro, não é observada em qualquer escala. O sistema solar, por exemplo, é altamente inomogêneo, consistindo de um grande aglomerado de massa em seu centro, o Sol, e os planetas muito menos massivos, que orbitam a estrela central. Se observamos este sistema de um ponto cada vez mais afastado veremos que muitas outras estrelas existem na nossa vizinhança, formando a galáxia Via Láctea, que por sua vez consiste em um grande aglomerado central de corpos celestes, circundado por braços espiralados. é interessante lembrar que nosso Sol se encontra na ponta de um destes braços. Afastando-nos ainda mais perceberemos que nossa galáxia faz parte de um aglomerado de galáxias e os aglomerados se dispõem em forma de gigantescos filamentos e paredes cósmicas. A homogeneidade só é obtida, aproximadamente, em escalas ainda maiores.

A suposição de FLRW permite uma grande simplificação das equações de Einstein que passam, agora, a exibir soluções razoavelmente simples e tratáveis e que formam a base do entendimento moderno da disposição e evolução do universo. As equações que descrevem esta dinâmica, no entanto, dependem fortemente de um parâmetro que não pode ser fornecido pela própria teoria, mas deve ser medido ou observado. Este parâmetro é a densidade, a quantidade média de massa contida em cada unidade de volume. Quanto maior a densidade maior será a força de atração universal entre todos os componentes do universo. Sabemos, pela observação, que estamos em expansão. Se a densidade for acima de uma certa densidade crítica a atração será suficiente para frear a expansão e o universo se contrairá após atingir uma expansão máxima, colapsando sobre si mesmo e provavelmente caindo em direção a um gigantesco buraco negro. Se a densidade for menor que a crítica ele continuará para sempre em sua expansão pois a atração não será suficiente para fazê-lo recontrair-se. O caso intermediário, de densidade crítica, é representado por uma expansão eterna com paralização no infinito.

Uma analogia útil:

Velocidade de escape

Podemos aqui tentar uma analogia com um caso bem mais simples e concreto. Você está em um planeta qualquer e, quando olha para o céu, vê uma pedra que está subindo. Naturalmente você conclui que ela tinha velocidade mais alta no passado, já que ela está sendo atraída (e, portanto, freada) pela gravidade do planeta. Se a massa do planeta for muito grande a atração será suficiente para frear a pedra que voltará a cair no chão. Se a massa do planeta for pequena a pedra pode estar com velocidade superior à velocidade mínima para que esteja presa ao planeta e não tornará a cair. Neste caso ela voa direto para o espaço e abandona seu planeta natal. No caso intermediário é o, a chamada situação crítica, a pedra voa para fora da órbita do planeta com velocidade exatamente igual à velocidade de escape.

Alternativamente, se atirarmos uma pedra do alto de uma montanha, como ilustrado na figura ao lado, ela cairá perto da montanha se a velocidade for muito baixa ou a massa do planeta for alta (caso A) ou sairá da órbita do planeta se a velocidade for alta ou a massa do planeta for pequena (caso B). O caso intermediário ocorre quando a pedra entra em órbita, percorrendo uma trajetória circular ou elíptica (ilustrado no caso C).

Nota: Um gás que se expande rapidamente, sem trocar calor com o ambiente, se esfria, enquanto um gás que se contrai nas mesmas condições se esquenta.

Assim como acontece no caso da pedra, citado como exemplo, este modelo de mundo fornece uma descrição do que ocorreu e do que poderá ocorrer com o universo. Como quase todas as galáxias estão se afastando podemos concluir que elas estiveram muito mais próximas no passado. Com a mesma energia disponível então, o universo teve origem em uma grande explosão muito quente. As teorias relativas à materia (que envolvem principalmente a mecânica quântica e a teoria quântica de campos) prevêm que as partículas elementares foram geradas e espalhadas pelo espaço com altísimas energia.

Penzias e Wilson e a detecção da radiação cósmica de fundo.

Enquanto isto outras evidências de que houve uma Grande Explosão eram verificadas. Em 1965 dois físicos americanos, Penzias e Wilson estavam trabalhando em uma grande antena muito sensível, com o formato de um chifre, usada para pesquisa em telecomunicações. Eles então perceberam que havia um ruído na recepção da antena, ruído que, por mais que se esforçassem, não puderam eliminar. Eles procuraram apontar a antena em diversas direções, descobrindo que a radiação desconhecida não provinha da Terra, nem do Sol e nem mesmo de nossa galáxia, mas estava espalhada uniformemente por todo o espaço. Então eles ouviram falar das descobertas teóricas de que o universo poderia ter sido originado em um estado de alta densidade e temperatura e compreenderam que ela era remanescente da grande explosão. Esta radiação foi denominada Radiação de Microondas Cósmica de Fundo e hoje ela é conhecida com alto nível de precisão. A uniformidade da radição pelo espaço é uma testemunha da homogeneidade do próprio universo, principalmente na época em que a radiação foi gerada e sua distribuição (frequência versus intensidade) determina uma temperatura de 3 K (3 graus Kelvin, equivalente a aproximadamente -270 oC ). Ela, no entanto, possui ondulações ou desvios da uniformidade, em perfeita conformidade com as teorias que descrevem a formação das estruturas cósmicas, tais como galáxias e aglomerados, hoje existentes.

Esta e outras verificações observacionais favoreceram a teoria do Big Bang em desfavor de teorias alternativas, tais como a Teoria do Universo Constante (Steady State Universe) que propunha ser o universo sempre imutável em densidade e que a expansão, que não pode ser negada, era compensada por uma constante criação de nova matéria no meio intergalático. A idade do universo no modelo padrão pode ser calculada com auxílio das equações de Einstein e a partir das medidas da constante de Hubble: o universo tem de 13.5 a 14 bilhões de anos. Medidas atuais indicam uma idade de aproximadamente 13.73 bilhões, com uma incerteza de 120 milhões de anos.

História Resumida do Universo

A história do universo decorrente desta teoria pode ser resumida da seguinte forma:

A Era de Planck: nos primeiros instantes, frações mínimas de segundo após a explosão (até 10-36 segundos) o universo estava tão quente e a curvatura do espaço tão acentuada que não se pode esperar que o paradigma atualmente aceito das leis físicas se aplique. é provável que novas teorias sejam necessárias para um entendimento desta era, tais como Gravitação Quântica e Teoria de Cordas. Existem diversas especulações sobre que tipo de campo teria provocado a explosão, mas todas estas teorias estão ainda em fase de desenvolvimento. Pode-se dizer que não existe hoje um entendimento razoável da física operante na época.

A Era Inflacionária: Após este período o universo entra em sua fase inflacionária, um período em que os campos quânticos entre partículas determinam um rápido afastamento mútuo de todas as partículas existentes. Durante esta era se espera o aniquilamento da antimatéria gerada na explosão enquanto a pressão exercida pela radiação é excessivamente grande para permitir a associação de partículas elementares como os prótons e neutrons. Por outro lado a densidade da sopa primordial de partículas é tão densa que a radiação não consegue viajar livremente e se diz que matéria e radiação estão acopladas. A temperatura cai até 1015 K.

(3) É curioso observar que todos os processos de nucleosíntese conhecidos (o mecanismo de formação da matéria) indica aformação inicial apenas de hidrogênio e hélio (respectivamente números atômicos 1 e 2). Isto significa que todos os demais tipos de átomo são formados por processos posteriores, em particular no interior das estrelas, como exploraremos na seção sobre a evolução estelar!

Desacoplamento e Era Bariônica: com a queda da temperatura abaixo de 15 K a densidade de matéria se torna mais baixa e a radiação passa a viajar livremente. Neste período teria sido gerada a radiação que hoje se apresenta a nós como radiação cósmica de fundo, agora com temperatura de 3 K. Partículas elementares se agrupam em bárions (protóns e neutrons, os núcleos da matéria ordinária3) e, mais tarde, os eletrons passam a orbitar estes núcleos formando átomos de hidrogênio e hélio. Também nesta época se dá o início da formação das estruturas universais em grande escala, que futuramente darão origem às galáxias, aglomerados galáticos, filamentos, paredes e grandes vazios.

O Futuro do Universo: A história futura do Universo depende de densidade de matéria e energia nele existente. Apesar dos avanços recentes sobre o assunto, muitas dúvidas permanecem em aberto. Se a densidade de matéria fosse maior que a crítica o universo atingiria uma expansão máxima e depois voltaria a se contrair com toda a matéria se aglutinando em um gigantesco buraco negro. Literalmente “o céu cairia sobre nossas cabeças”. Já houve quem especulasse sobre a possibilidade de que, após a contração, uma nova explosão desse origem a um novo universo.

No entanto a densidade de matéria ordinária (chamada matéria bariônica, feita de núcleos com prótons e neutrons) é bem menor que a densidade crítica (em torno de 1%) e é portanto insuficiente para conter a expansão. Segundo a observação outras fontes de atração adicionais parecem existir, e este tem sido tema de intenso estudo. Existem medidas que indicam que o universo está muito próximo de sua densidade crítica, tornando-se assim necessário descobrir de onde vem a atração adicional, que não da matéria comum. Este é o chamado problema da massa faltante (missing mass).

Hoje é possível observar um objeto individual contido em uma galáxia outra que a nossa própria, e medir a sua velocidade. Ocorre que as velocidades de estrelas em torno de galáxias não obedecem as leis de Kepler, o que sugere a existência de uma matéria incomum permeando e envolvendo como um halo as galáxias. Esta é a chamada matéria escura (dark matter) que não emite luz e nem interage com a radiação emitida pela matéria comum, embora produza efeito gravitacional. Especula-se que parte da massa faltante possa ser encontrada ai. Além disto há a possibilidade que esta massa seja explicada pela presença de partículas elementares como o neutrino, que interage pouquíssimo com a matéria comum, ou pela existência de grande número de pequenas estrelas (ou grandes planetas) com uma massa insuficiente para iniciar a combustão nuclear que ocorre nas estrelas comuns e que são responsáveis pelo seu brilho. Há ainda a possibilidade de que algum efeito inerente ao próprio espaço-tempo, algo como a constante cosmológica de Einstein, que mencionamos antes, possa ser responsabilizada pela diferença da massa. De fato, medidas recentes indicam que o universo, ao contrário de estar sendo desacelerado pela atração gravitacional, como esperado, esteja sendo, pelo contrário, acelerado em sua expansão, como se ainda estivéssemos sob o efeito de algum campo inflacionário. Neste caso, ou no caso de verificarmos uma densidade abaixo da crítica, o universo se expandirá para sempre, se tornando cada vez mais frio e uniforme. De acordo com a lei da entropia as regiões de diferentes temperaturas se tornarão cada vêz mais homogêneas e não existirá diferenças de potenciais de qualquer tipo para que a matéria ou energia inicie novos processos tais como a formação de novos objetos celestes. Este é, de fato, um final monótono para o universo.

Bibliografia

Existem muitos livros bons sobre o assunto, no nível de divulgação científica. Entre eles:

  • Gleiser, Marcelo : A Dança do Universo – dos Mitos de Criação ao Big-Bang. São Paulo: Companhia das Letras, 1997.
  • ____ : O Fim da Terra e do Céu, São Paulo: Companhia das Letras, 2001.
  • Harrison, Edward :A Escuridão da Noite – Um enigma do universo, São Paulo: Jorge Zahar Editor, 1995.
  • Islam, J. N. : O destino final do universo, Rio da Janeiro: Francisco Alves,
  • Silk, Joseph : O Big Bang – A Origem do UniversoBrasília: Editora da Universidade de Brasília, 1985.
Para aqueles que procuram um conhecimento mais técnico e matemático sobre o assunto:
  • Morais, Antônio M. A. : Supernovas & Cosmologia, São Paulo: Livraria da Física, 2009.
  • ____ : Gravitação & Cosmologia, uma Introdução, São Paulo: Livraria da Física, 2010.
  • Souza, Ronaldo E. : Introdução à Cosmologia, São Paulo: Livraria da Física, 2004.