Textos de Nível Superior

A Teoria da Relatividade ESpecial


“Após dez anos de reflexões tal princípio emergiu de um paradoxo que eu já tinha antevisto quando tinha 16 anos: se eu perseguir um feixe de luz com a mesma velocidade que uma frente de onda (a velocidade da luz no vácuo) então eu deveria observar este feixe como um campo eletromagnético constante e periódico no espaço. No entanto tal coisa não parece existir, nem com base na experimentação nem de acordo com as equações de Maxwell…” Einstein (1951)

A Mecânica é o ramo da física que estuda a ação das forças sobre os corpos e o comportamento dos sistemas materiais sujeitos à atuação dessas forças. Seus fundamentos foram lançados por Issac Newton no século XVII, apoiado sobre as contribuições de Galileu, Copérnico e Kepler. Para descrever com precisão a teoria recém elaborada Newton desenvolveu o formalismo matemático do Cálculo Diferencial e Integral(1).A mecânica de Newton é baseada …

Álgebra Linear

A álgebra linear é o ramo da matemática que estuda os espaços vetoriais, ou espaços lineares, além de funções (ou aplicações, ou transformações) lineares que associam vetores entre dois espaços vetoriais. Espaços vetoriais são uma generalização do espaço \(\mathbb{R}^3\) cotidiano e de senso comum onde vivemos, com dimensões tais como largura, altura e profundidade. Os pontos de \(\mathbb{R}^3\) podem ser associados a vetores, visualizados nos cursos básicos como setas que tem a base na origem, o ponto \((0,\,0,\,0)\), e extremo oposto no ponto em questão. Sob diversos aspectos diferentes é equivalente dizer que o próprio espaço \(\mathbb{R}^3\) é um conjunto de pontos, ou de vetores. Estes vetores e sua álgebra (o conjunto de operações que podem ser realizadas sobre eles) são uma ferramenta importante em diversas áreas da ciência, notadamente na física. Além disto é possível mostrar, como faremos neste texto, que vários outros espaços possuem propriedades semelhantes ao \(\mathbb{R}^3\). Estes espaços, chamados de forma generalizada de espaços vetoriais, podem ser profundamente diferentes dos espaços que consistem de “setas”. Por isto a noção primária de uma seta, assim como a notação usual de uma seta desenhada sobre o nome do vetor, deve ser abandonada.

Provavelmente o curso de álgebra linear é o curso, dentro das disciplinas da matemática, de maior importância para estudantes e profissionais de diversas áreas fora da própria matemática. Ele é essencial nas engenharias e, particularmente, na ciência da computação. Por outro lado, para alunos de matemática, ele significa a primeira grande incursão no terreno da abstração, onde conceitos bastantes concretos, válidos para os vetores de três dimensões, são aplicados em outros espaços de dimensões arbitrárias e de natureza diversa e muitas vezes surpreendente. Nem sempre é trivial a passagem entre tópicos tais como a solução de sistemas de n equações lineares com m incógnitas para outro como núcleos de transformações lineares, homomorfismos e isomorfismos.